KENYA ELECTRICITY TRANSMISSION CO. LTD

ENVIRONMENTAL & SOCIAL IMPACT ASSESSMENT PROJECT REPORT FOR THE PROPOSED NAROK 132/33 kV SUBSTATIONS IN ILMASHARIANI-MORICHO, ALONG NAROK –MAAI MAHIU ROAD, NAROK COUNTY

The ESIA Team
1. David Moindi - Lead EIA /Audit Expert
2. Ramat Godana - Lead EIA /Audit Expert
3. Johnson Muthoka – Land Economist
4. Eliud Moki – Land Surveyor
5. Ahmed Sheikh - Socio-Economist
7. Eng. Justin Muna – Civil Engineer

Proponent
Kenya Electricity Transmission Co. Ltd
Caparo Place, 2nd Floor – Upper Hill
P.O. Box 34942 - 00200
Nairobi-Kenya
Tel: + 254 20 4956000
Email: info@ketraco.co.ke
CERTIFICATE OF DECLARATION AND DOCUMENT AUTHENTICATION
This document has been prepared in accordance with Environmental (Impact Assessment and Audit) Regulations, 2003 of the Kenya Gazette supplement No. 56 of 13th June 2003, Legal Notice No. 101.

LEAD EIA/AUDIT EXPERTS

David Moindi EIA/Audit Expert Licence No.1501

Signature:---

Date:---

Ramat Godana EIA/Audit Expert Licence No

Signature:---

Date:---

Proponent:

For:
Kenya Electricity Transmission Co. Ltd
P.O. Box 34942 - 00200
Nairobi-Kenya
Tel: + 254 20 4956000
Email:info@ketraco.co.ke

Name: Dr. (Eng.) John Mativo

Designation: Head of Technical Services

Signature:---

Date:---

Do hereby certify that this report was prepared based on the information provided by various stakeholders as well as that collected from other primary and secondary sources and on the best understanding and interpretation of the facts by the Environmental Social & Impact Assessors. It is issued without any préjudice.
EXECUTIVE SUMMARY

Introduction
The Government of Kenya plans to increase access to electricity in Kenya tenfold from the current 4% in the rural areas to about 40% by 2020. To do this, the transmission lines network is being considered for upgrading and with it the communication system required for line protection and management purposes. The Kenya Power and Lighting Company Limited (KPLC) least cost power development plan identified various 132 KV developments for improving the performance of the national grid network to cater for the increasing load growth and meet the objectives of 2030. The Kenya Electricity Transmission Company Limited (KETRACO), which now assumes the full mandate of constructing and managing transmission lines and associated sub stations, is planning to construct a new single circuit 132 kV transmission line between Kindaruma-Mwingi-Garissa Transmission, including establishment of a 4no. 132/33, 5 MVA Substations at Mwingi, Kitui, Wote and Sultan Hamud.

The proposed line will serve the greater districts of Mwingi in Eastern province, Tana River in Coast province, and Garissa in North eastern province and beyond.

The Kenya Government policy on all new projects requires that an Environmental and Social Impact Assessment (ESIA) study be carried out at the project planning phase in order to ensure that significant impacts on the environment are taken into consideration at the construction, operations and decommissioning stages. KPLC on behalf of KETRACO, contracted Norken (I) Ltd. to carry out an ESIA for the Kindaruma – Mwingi-Garissa 132kV transmission line. The EIA study report has already been approved by the National Environment Management Authority (Licence Number: 0006234). However, the ESIA for the substation at Mwingi was not conducted. KETRACO has used its in-house man-power consisting of Electrical and Civil Engineers, Socio-Economists, Land Economists, Surveyors and Environmental Experts to undertake the ESIA for the proposed Mwingi 132/33 kV substation.

In Mwingi, the proposed substation will be located in Mwingi Central Division, Mwingi District, Mwingi County. Four sites, all located within a radius of 5km of Mwingi town, have been identified. An assessment of the sites has been done with two optimal locations identified. Negotiations (for purposes of acquisition) with the owners of the preferred sites has been initiated by KETRACO. The estimated cost of the project is approximately USD Three Million Seven Hundred thousand.

Study Objectives
The principal objective of this assessment was to identify significant potential impacts of the project on environmental and social aspects, and to formulate recommendations to ensure that the proposed project takes into consideration appropriate measures to mitigate any adverse
impacts to the environment and people’s health through all of its phases (construction, implementation and decommissioning phases).

Scope
The ESIA study was limited to:
- The baseline environmental conditions of the area,
- Description of the proposed project,
- Provisions of the relevant environmental laws,
- Public participation,
- Identification and discussion of any adverse impacts to the environment anticipated from the proposed project,
- Appropriate mitigation measures,
- Development of an environmental management plan outline.

Study Methodology
The approach to this exercise was structured such as to cover the requirements under the EMCA, 1999 as well as the Environmental Management and Coordination (Impact Assessment and Audit) Regulations 2003. It involved largely an understanding of the project background, the preliminary designs and the implementation plan as well as decommissioning. In addition, baseline information was obtained through physical investigation of the site and the surrounding areas, desktop studies, public consultations with Lead Agencies and members of the community in the project areas, survey, photography, and discussions with key people in KETRACO (the proponent) and KPLC.

The key activities undertaken during the assessment included the following:
- Consultations with the key project stakeholders including the project proponent, community members, provincial administration, opinion leaders and district departmental heads. The consultations were based on the proposed project, site planning and the project implementation plan;
- Physical inspections of the proposed project area which included observation of available land marks, photography and interviews with the local residents;
- Evaluation of the activities around the project site and the environmental setting of the wider area through physical observations and literature review;
- Review of available project documents; and
- Report writing, review and submission.

Policy, Legal and Regulatory Framework
The Environmental Management and Co-ordination Act (EMCA), 1999, is the legislation that governs EIA studies in Kenya. This project falls under the Second Schedule of EMCA, 1999, which list the type of projects that are required to undergo EIA studies in accordance with
Section 58(1-4) of the Act. Various other key national laws that govern the management of environmental resources in the country have been discussed in the report. Also discussed are international laws relevant to the proposed projects and good practices as contained in the World Bank Safeguard policies.

Identified Potential Impacts

The following positive and negative impacts are likely to be associated with the proposed project.

Positive Impacts

- Reliable and secure power supply to Mwingi and surrounding areas
- Direct and indirect skilled and non-skilled employment opportunities
- Gains in the local and national economy and increase in revenue.
- Informal sectors benefits
- Development of other Sectors
- Increased security in the area

Negative Impacts

- Noise pollution
- Generation of exhaust emissions
- Dust emissions
- Solid and liquid waste generation
- Oil spill hazards
- Destruction of existing vegetation and habitats
- Avifauna mortality
- Increased demand for material consumption
- Impacts on workers’ and community health and safety
- Soil erosion
- Fire outbreaks
- Visual and aesthetic impacts
- Incidences of electrocution
- Perceived dangers of electrostatic and magnetic forces
- Increase in social vices
- Land take – loss of use

Proposed Mitigation Measures

Mitigation of the potential impacts as described in chapter 6, and implementation of the Environmental Management Plan and Environmental Monitoring Plan (chapter 7 and 8) will help to minimize the negative impacts, and enhance the positive outcomes of the project.
Conclusion
An Environmental Management Plan (EMP) outline has been developed to ensure sustainability of the site activities from construction through operation to decommissioning. The plan provides a general outline of the activities, associated impacts, and mitigation action plans. Implementation timeframes and responsibilities are defined, and where practicable, the cost estimates for recommended measures are also provided.

A monitoring plan has also been developed and highlights some of the environmental performance indicators that should be monitored. Monitoring creates possibilities to call to attention changes and problems in environmental quality. It involves the continuous or periodic review of operational and maintenance activities to determine the effectiveness of recommended mitigation measures. Consequently, trends in environmental degradation or improvement can be established, and previously unforeseen impacts can be identified or preempted.

It is strongly recommended that a concerted effort is made by the site management in particular, to implement the Environmental Management and Monitoring Plan provided herein. Following the commissioning of the 132/33 kV transmission substation, statutory Environmental and Safety Audits must be carried out in compliance with the national legal requirements, and the environmental performance of the site operations should be evaluated against the recommended measures and targets laid out in this report.

It is quite evident from this study that the construction and operation of the proposed transmission substation will bring positive effects in the project area including improved supply of electricity, creation of employment opportunities, gains in the local and national economy, provision of market for supply of building materials, informal sectors benefits, Increase in revenue, Improvement in the quality of life for the workers and community members, and Improved security.

Considering the proposed location, construction, management, mitigation and monitoring plan that will be put in place, the project is considered important, strategic and beneficial and given that no immitigable negative impacts were encountered and that no community objection was received, the project may be allowed to proceed.
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. iii

CHAPTER 1: INTRODUCTION .. 13

1.1 Project Background ... 13
1.2 Project Location .. 14
1.3 Study Objectives ... 14
1.4 Terms of Reference (TOR) for the ESIA Process .. 15
1.5 Scope of the Study .. 15
1.6 ESIA Approach and Methodology .. 16

CHAPTER 2: PROJECT DESCRIPTION .. 20

2.1 Nature of the Project ... 20
2.2 Site Ownership ... 20
2.3 Project Justification .. 20
2.4 Substation Design and Layout ... 20
2.5 Construction Procedures ... 21
 2.5.1 Construction activities Outline .. 21
2.5.2 Input Materials ... 22
2.6 Project Budget ... 22
2.7 Target Group for the ESIA Report .. 22
2.8 Analysis for Alternatives .. 23
 2.8.1 The “Do Nothing” Option .. 23
2.8.2 Alternative Designs .. 23
2.8.3 Demand-side Management Option .. 23
2.8.4 Alternative Sites .. 24
2.8.5 Alternative Processes and Materials ... 24

CHAPTER 3: ENVIRONMENTAL SET-UP OF THE PROPOSED PROJECT AREA 25

3.1 Position and Size ... Error! Bookmark not defined.
3.2 Administrative and Political units .. Error! Bookmark not defined.
3.3 Demographic and Population Profile .. Error! Bookmark not defined.
3.4 Settlement patterns ... Error! Bookmark not defined.
3.5 Physiographic and topographic characteristics .. Error! Bookmark not defined.
3.6 Drainage .. Error! Bookmark not defined.
3.7 Climate .. Error! Bookmark not defined.
3.8 Soils ... Error! Bookmark not defined.
3.9 Land use ... Error! Bookmark not defined.

CHAPTER 4: RELEVANT LEGISLATIVE AND REGULATORY FRAMEWORKS 26

4.1 Introduction ... 26
4.2 NATIONAL POLICY AND LEGAL FRAMEWORK ... 27
 4.2.1 Policy ... 27
 4.2.2 Legal Framework ... 27
 4.2.3 The Environment Management and Co-ordination Act, 1999 28
 4.2.4 The Environmental (Impact Assessment and Audit) Regulations, 2003 29
 4.2.5 The Occupational Health and Safety Act, 2007 .. 29
4.2.6 Environmental Management and Coordination (Noise and Excessive Vibration Pollution Control) Regulations, 2009. .. 30
4.2.7 Draft Environmental Management and Coordination (Air Quality) Regulations, 2008 .. 31
4.2.8 The Water Act 2002 ... 31
4.2.9 The Lakes and Rivers Act Chapter 409 Laws of Kenya 31
4.2.10 The Public Health Act (Cap. 242) ... 31
4.2.11 Waste Management Regulations, 2006 ... 32
4.2.12 Physical Planning Act (Cap286) ... 32
4.2.13 Occupiers Liability Act (Cap. 34) .. 32
4.2.14 Land Acquisition Act (Cap. 295) ... 32
4.2.15 The Registered Land Act Chapter 300 Laws of Kenya: 33
4.2.16 The Land Adjudication Act Chapter 95 Laws of Kenya 33
4.2.17 The Standards Act Cap 496 ... 34
4.2.18 The Antiquities and Monuments Act, 1983 Cap 215 34
4.2.19 The Civil Aviation Act, Cap 394 .. 34
4.2.20 The Environmental Management and Co-Ordination (Conservation of Biological Diversity and Resources, Access to Genetic Resources and Benefit Sharing) Regulations, 2006 .. 35
4.2.21 Environmental Management and Coordination (Controlled Substances) Regulation, 2007, Legal Notice No. 73 ... 35
4.2.22 Environmental Management and Coordination, Fossil Fuel Emission Control Regulation 2006 ... 35
4.2.23 Environmental Management and Coordination (Wetlands, River Banks, Lake Shores and Sea Shore Management) Regulation, 2009. 36
4.2.29 Penal Code Act (Cap.63) ... 36
4.2.30 Energy Act, 2006 ... 36
4.3 ADMINISTRATIVE FRAMEWORK ... 37
4.3.1 The National Environment Council .. 37
4.3.2 The National Environment Management Authority 37
4.3.3 The Standards and Enforcement Review Committee 37
4.3.4 The Provincial and District Environment Committees 37
4.3.5 The Public Complaints Committee ... 38
4.4 INTERNATIONAL ENVIRONMENTAL GUIDELINES 38
4.5 WORLD BANK’S SAFEGUARD POLICIES ... 39
4.5.1 World Bank Safeguard Policy 4.01-Environmental Assessment 39
4.5.2 Bank Safeguard Policy 4.04-Natural Habitats 40
4.5.3 Bank Safeguard Policy 4.09-Pest Management 40
4.5.4 Bank Safeguard Policy 4.12-Involuntary Resettlement 40
4.5.5 Bank Safeguard Policy 4.20-Indigenous People 41
4.5.6 World Bank Safeguard Policy BP 17.50- Public Disclosure 41

CHAPTER 5: STAKEHOLDER CONSULTATION ... 42
5.1 Introduction .. 42
5.2 The specific objective of the consultation process 42
5.3 Identification of stakeholders ... 42
5.4 Approaches to Stakeholder Consultations .. 43
5.4.1 Key Informant Interviews and questionnaires 43
5.4.2 Community questionnaires ... 44
5.4.3 Public Barazas .. 44
5.5 Results of the Stakeholder consultations ... 44

5.5.1: Minutes of a public Baraza held on 17th January 2011 at Kanginga Oasis Academy primary school in Kavuvwani location, Mwingi Central Division, Mwingi District, Kitui County .. 44
5.5.2 Summary of issues raised in interviews and questionnaires 48
5.5.3 Specific view and concerns ... 49
5.5.4: Overall picture from the stakeholder consultations 50

CHAPTER 6: ENVIRONMENTAL AND SOCIAL IMPACTS OF THE PROPOSED 132/333 kV MWINGI SUBSTATION ... 51

6.1 Introduction ... 51

6.2 Positive Impacts .. 52
 6.2.1 Reliable and Secure Electricity Power Supply 52
 6.2.2 Employment Opportunities .. 52
 6.2.3 Gains in the Local and National Economy 52
 6.2.4 Informal Sector Benefits ... 53
 6.2.5 Development of Other Sectors ... 53
 6.2.6 Security .. 53

6.3 Negative Impacts .. 53
 6.3.1 Noise Pollution ... 53
 6.3.2 Generation of Exhaust Emissions ... 53
 6.3.3 Dust Emissions ... 53
 6.3.4 Solid and Liquid Waste Generation ... 54
 6.3.5 Oil Spill Hazards ... 54
 6.3.6 Destruction of Existing Vegetation and Habitats 54
 6.3.7 Avifauna Mortalities ... 54
 6.3.8 Increased Demand for Material Consumption 54
 6.3.9 Impacts on Workers’ and Community Health and Safety 55
 6.3.10 Soil Erosion .. 55
 6.3.11 Fire Outbreaks .. 55
 6.3.12 Visual and Aesthetic Impacts ... 55
 6.3.13 Incidences of Electrocutition... 55
 6.3.14 Perceived Danger of Electrostatic and Magnetic force 55
 6.3.15 Increase in Social Vices ... 56
 6.3.16 Land take – Loss of Use ... 56

6.4 Proposed Mitigation Measures .. 56
 6.4.1 Noise Pollution ... 56
 6.4.2 Generation of Exhaust Emissions ... 56
 6.4.3 Dust Emissions ... 57
 6.4.4 Solid and Liquid Waste Generation ... 57
 6.4.5 Oil Spill Hazards ... 57
 6.4.6 Destruction of Existing Vegetation and Habitats 58
 6.4.7 Avifauna Mortalities ... 58
 6.4.8 Increased Demand for Material Consumption 58
 6.4.9 Impacts on Workers’ and Community Health and Safety 59
 6.4.10 Soil Erosion .. 59
6.4.11 Fire Outbreaks ... 59
6.4.12 Visual and Aesthetic Impacts ... 59
6.4.13 Incidences of Electrocution ... 60
6.4.14 Perceived Danger of Electrostatic and Magnetic force 60
6.4.15 Increase in Social Vices .. 60
6.4.16 Land take – Loss of Use ... 60

CHAPTER 7: ENVIRONMENTAL MANAGEMENT PLAN (EMP) 61
Table 7.1: Environmental Management Plan during the construction phase of the proposed 132/33 kV substation at Mwingi .. 61
Table 7.2: Environmental management Plan for the operation phase of the proposed 132/33 kV substation .. 73
Table 7.3: Environmental Management Plan for the decommissioning phase of the proposed 132/33 kV substation ... 82

CHAPTER 8: ENVIRONMENTAL MONITORING PLAN (EMoP) 86
Table 8.1: Environmental Monitoring Plan for the proposed 132/33 kV substations at Mwingi .. 86

CHAPTER 9: RECOMMENDATIONS AND CONCLUSION 91
9.1 Introduction ... 91
9.2 Recommendations .. 92
9.3 Conclusion .. 92

REFERENCES .. 93
APPENDICES ... 94

APPENDICES
Appendix I: ESIA Team EIA/EA practising licenses/certificates
Appendix II: Sample of filled community questionnaires
Appendix III: Filled key informants questionnaires
Appendix IV: Public Baraza attendance sheets
Appendix VI: Filled World Bank and JICA site screening checklists
Appendix VII: Substation layout designs

LIST OF TABLES
Table 3.4.1: Livelihood zone of Mwingi District by Division and population distribution
Table 3.3.1: Demographic Indicators in Mwingi District
Table 3.2.2: locations and wards in Mwingi District
Table 3.2.1: Administrative units in Mwingi District and their size
Table 6.1: Summary of potential impacts
Table 7.1: Environmental Management Plan during the construction phase of the proposed 132/33 kV substation at Mwingi
Table 7.2: Environmental Management Plan for the operation phase of the proposed 132/33 kV substation
Table 7.3: Environmental Management Plan for the decommissioning phase of the proposed 132/33 kV substation
Table 8.1: Environmental Monitoring Plan for the proposed 132/33 kV substations at Mwingi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEZ</td>
<td>Agro Ecological Zone</td>
</tr>
<tr>
<td>AGO</td>
<td>Automotive Gas Oil</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>AST</td>
<td>Above Ground Storage Tank</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>CEO</td>
<td>Chief Executive Officer</td>
</tr>
<tr>
<td>CT</td>
<td>Current Transformer</td>
</tr>
<tr>
<td>CVT</td>
<td>Constant Voltage Transformer</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>DO</td>
<td>District Officer</td>
</tr>
<tr>
<td>DOHSS</td>
<td>Directorate of Occupational Health and Safety Services</td>
</tr>
<tr>
<td>DC</td>
<td>District Commissioner</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Audit</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EMCA</td>
<td>Environmental Management and Coordination Act, 1999</td>
</tr>
<tr>
<td>EMoP</td>
<td>Environmental Monitoring Plan</td>
</tr>
<tr>
<td>EMP</td>
<td>Environmental Management Plan</td>
</tr>
<tr>
<td>ERC</td>
<td>Energy Regulatory Commission</td>
</tr>
<tr>
<td>GDC</td>
<td>Geothermal Development Company</td>
</tr>
<tr>
<td>GHGs</td>
<td>Green House Gases</td>
</tr>
<tr>
<td>GoK</td>
<td>Government of Kenya</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HFO</td>
<td>Heavy Fuel Oil</td>
</tr>
<tr>
<td>IPP</td>
<td>Independent Power Producers</td>
</tr>
<tr>
<td>KenGen</td>
<td>Kenya Generating Company</td>
</tr>
<tr>
<td>KETRACO</td>
<td>Kenya Electricity Transmission Company</td>
</tr>
<tr>
<td>KFS</td>
<td>Kenya Forest Service</td>
</tr>
<tr>
<td>KPLC</td>
<td>Kenya Power and Lighting Company</td>
</tr>
<tr>
<td>Kshs.</td>
<td>Kenya Shillings</td>
</tr>
<tr>
<td>kW</td>
<td>Kilo Watt Hour</td>
</tr>
<tr>
<td>KWS</td>
<td>Kenya Wildlife Service</td>
</tr>
<tr>
<td>L.R</td>
<td>Land Registration</td>
</tr>
<tr>
<td>mg/kg</td>
<td>Milligrams per kilogram</td>
</tr>
<tr>
<td>MoE</td>
<td>Ministry of Energy</td>
</tr>
<tr>
<td>MW</td>
<td>Mega Watts</td>
</tr>
<tr>
<td>MVA</td>
<td>Mega Volt Amperes</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Environment Management Authority</td>
</tr>
<tr>
<td>NOx</td>
<td>Oxides of Nitrogen</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupation Safety and Health Act</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>REA</td>
<td>Rural Electrification Authority</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SHE</td>
<td>Safety Health and Environment</td>
</tr>
<tr>
<td>SOx</td>
<td>Oxides of Sulphur</td>
</tr>
<tr>
<td>STD</td>
<td>Sexually Transmitted Diseases</td>
</tr>
<tr>
<td>TPH</td>
<td>Total Petroleum Hydrocarbon</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

1.1 Project Background

The Government of Kenya plans to increase access to electricity in Kenya tenfold from the current 4% in the rural areas to about 40% by 2020. To do this, the transmission lines network is being considered for upgrading and with it the communication system required for line protection and management purposes. The Kenya Power and Lighting Company Limited (KPLC) least cost power development plan identified various 132 KV developments for improving the performance of the national grid network to cater for the increasing load growth and meet the objectives of 2030. The Kenya Electricity Company Limited (KETRACO), which now assumes the full mandate of constructing and managing transmission lines and associated sub stations, is planning to construct a new single circuit 132 kV transmission line between Kindaruma-Mwingi-Garissa Transmission, including establishment of a 4no. 132/33, 5 MVA Substations at Mwingi, Kitui, Wote and Sultan Hamud.

The proposed line will serve the greater districts of Mwingi in Eastern province, Tana River in Coast province, and Garissa in North eastern province and beyond. The proposed sub station at Mwingi will boost power supply consequently enhancing reliability in Mwingi town and surrounding areas.

KETRACO has to supply power reliably to meet the increasing needs and demands of end-users. Therefore, KETRACO has to expand and establish its infrastructure of Transmission Lines and substations on an ongoing basis. The substations have to be built while maintaining the balance between satisfying the society’s needs for energy and environmental constraints. The purpose of the proposed transmission line and substations is to increase security of electricity supply to the surrounding industries, businesses, homes and social institutions among others.

The Kenya Government policy on all new projects requires that an Environmental and Social Impact Assessment (ESIA) study be carried out at the project planning phase in order to ensure that significant impacts on the environment are taken into consideration at the construction, operations and decommissioning stages. KPLC on behalf of KETRACO, contracted Norken (I) Ltd. to carry out an ESIA for the Kindaruma-Mwingi-Garissa 132kV transmission line. The EIA study report has already been approved by the National Environment Management Authority (Licence Number: 0006234). However, the ESIA for the substation at Mwingi was not conducted.
KETRACO has used its in-house man-power consisting of Electrical and Civil Engineers, Socio-Economists, Land Economists, Surveyors and Environmental Experts to undertake the ESIA for the proposed Mwingi 132/33 kV substation.

This Environmental Impact Assessment has identified both positive and negative impacts of the proposed project to the environment and proposes mitigation measures in the Environmental Management Plan developed to address potential negative impacts, during the construction, operation and decommissioning phases of the project, for overall environmental sustainability.

1.2 Project Location
The proposed substation will be located in Mwingi Central Division, Mwingi District, Mwingi County. Four sites, all located within a radius of 5km of Mwingi town, have been identified. An assessment of the sites has been done with two optimal locations identified. Negotiations (for purposes of acquisition) with the owners of the preferred sites has been initiated by KETRACO.

1.3 Study Objectives
The principal objective of this assessment was to identify significant potential impacts of the project on environmental and social aspects, and to formulate recommendations to ensure that the proposed project takes into consideration appropriate measures to mitigate any adverse impacts to the environment and people’s health through all of its phases (construction, implementation and decommissioning phases).

The specific objectives of this ESIA were to:

- Identify and assess all potential environmental and social impacts of the proposed project;
- Identify all potential significant adverse environmental and social impacts of the project and recommend measures for mitigation;
- Verify compliance with the environmental regulations and relevant standards;
- Identify problems (non-conformity) and recommend measures to improve the environmental management system;
- Generate baseline data that will be used to monitor and evaluate the mitigation measures implemented during the project cycle;
• Recommend cost effective measures to be used to mitigate against the anticipated negative impacts;

1.4 Terms of Reference (TOR) for the ESIA Process
The following are the TOR for the ESIA process
• Description of the baseline environment (physical, biological, social and cultural)
• Detailed description of the proposed project
• Review Legislative and regulatory framework that relate to the project
• Identify potential environmental impacts that could result from the project
• Carry out public consultation on positive and negative impacts of the project
• Propose mitigation measures against identified environmental and social impacts of the project
• Development of an Environmental Management Plan to mitigate negative impacts
• Development of an Environmental Monitoring Plan
• Environmental and Social Impact Assessment Report

1.5 Scope of the Study
The EIA scope largely covered the following areas:
(1) Baseline Conditions:
• Environmental setting (climate, topography, geology, hydrology, ecology, water resources, sensitive areas etc.),
• Socio-economic activities in the surrounding areas (land use, human settlements, economic activities, institutional aspects, water demand and use, health and safety, public amenities, etc.),
• Infrastructural issues (roads, water supplies, drainage systems, power supplies, etc.).
(2) Legal and policy framework:
• Focusing on the relevant national environmental laws, regulations and by-laws and other laws and policies focusing on allied activities relative to the project in question.
(3) Interactive approach was adopted for the immediate neighbourhood in discussing relevant issues including among others:
- Land use aspects,
- Neighbourhood issues,
- Project acceptability,
- Social, cultural and economic aspects,

(4) Environmental impacts:
- Physical impacts,
- Biological impacts,
- Legal Compliance.

1.6 ESIA Approach and Methodology
The approach to this exercise was structured such as to cover the requirements under the EMCA, 1999 as well as the Environmental Management and Coordination (Environmental Impact Assessment and Audit) Regulations, 2003. It involved largely an understanding of the project background, the preliminary designs and the implementation plan as well as commissioning. In addition, baseline information was obtained through physical investigation of the site and the surrounding areas, desktop studies, public consultations with members of the community in the project areas, survey, photography, and discussions with key people in KETRACO (the proponent) and KPLC.

The key activities undertaken during the assessment included the following:
- Consultations with the key project stakeholder including the project proponent, community members, provincial administration, opinion leaders and district and provincial departmental heads. The consultations were based on the proposed project, site planning and the project implementation plan;
- Physical inspections of the proposed project area which included observation of available land marks, photography and interviews with the local residents;
- Evaluation of the activities around the project site and the environmental setting of the wider area through physical observations and literature review;
- Review of available project documents; and
- Report writing, review and submissions.

Below is an outline of the basic ESIA steps that were followed during this assessment:
Step 1: Screening
Screening of the project was undertaken to evaluate the need of conducting an EIA and the level of study. Transmission substations are listed under schedule 2 of EMCA, 1999 among projects requiring EIA before commencement. In addition, other considerations taken into account during the screening process included the physical site location, zoning, nature of the immediate neighbourhood, sensitivity of the areas surrounding the site and socio-economic activities in the area, among others.

Step 2: Desk Study
Documentation review was a continuous exercise that involved a study of available documents on the project including the project set-up plans and architect’s statement, land ownership documentation, environmental legislation and regulations, district development plans, location maps, etc.

Step 3: Site Assessment
A site assessment was conducted on 18th August 2010 to establish:
- Land ownership, usage and conflicts;
- Flora, fauna and avifauna found on the site;
- The site landscape;
- Surface water bodies within the neighbourhood of the site and;
- The general environment and its sensitive receptors found within the environs of the site.

Step 4: Public Consultation
Detailed stakeholders consultations for Mwingi Sub station study were undertaken from the 19th August to 25th August 2010. These consultations were conducted in the form of: Key Informant Interviews and household/community interviews.

The following people were consulted:
- Provincial Occupational Safety and Health Officer, Eastern province
- District Forest Officer, Kenya Forest Service, Mwingi District
- Warden, Kenya Wildlife Service, Mwingi District
- County Clerk, Mwingi Town Council
- District Physical Planning Officer, Mwingi District.
- District Commissioner, Mwingi District
- District Development Officer, Mwingi District
- District Agricultural Officer, Mwingi District
- District public Health Officer, Mwingi District.
- District Livestock Development Officer, Mwingi District
- District Officer, Mwingi central Division.
- Area Councillor, Kavuvwani/Kiomo
- Chief, Kavuvwani location
- Assistant chief, Kavuvwani
- Chief, Mwingi location
- Chief, Kiomo location
- Assistant chief Kiomo
- A Public Baraza organized by the area chief and attended by 80 participants was held on 17th January 2011.

Step 5: Reporting
Specific issues covered in the project report include but are not limited to:
- Name of the proponent, address and contact person
- Title of the project
- Objectives and scope of the project
- Nature of the project;
- Location of the proposed project,
- Types of activities that will be undertaken during the project construction, operation and decommissioning phases;
- Design of the project;
- Proposed Project budget;
- Materials to be used, products and by-products, including waste to be generated by the project and the method(s) of their disposal;
- Potential environmental impacts of the project;
- Economic and social impacts to the local community and the nation in general;
- Views of the public/potentially affected people about the project; and
- An Environmental Management Plan (EMP) for the entire project cycle including mitigation measures to be taken during and after implementation of the project and an action plan for the prevention and management of foreseeable accidents during the project cycle.
CHAPTER 2: PROJECT DESCRIPTION

2.1 Nature of the Project
The project essentially involves construction of a 132/33kV substation at Mwingi to step down the 132kV incoming power voltage from Kindaruma for further distribution to feed the greater districts of Mwingi in Kitui County and beyond.

The substation will be built on a portion of a fifteen (15) acre plot of land in Mwingi Central Division along the Mwingi – Thika highway.

2.2 Site Ownership
The proposed project site is located along the Mwingi –Thika highway approximately 5 km from Mwingi Town.

The proposed sites are presently classified as agricultural. Among the four alternatives considered, the site at Kiomo (L.R. No.) was found most ideal and the owner has expressed willingness to sell his parcel of land to the Proponent.

2.3 Project Justification
According to the Least Cost Power development Plan 2010 – 2030 the 5 year strategic plan aims at connection over one million customers during the period 2009 – 2014. Towards implementation of this strategy and to reduce losses at transmission and distribution level throughout the country with an aim of enhancing the performance of the national grid network to cater for the increasing load growth, extensive expansion of 400kV system is planned for commissioning between 2010 and 2012.

The proposed transmission line will evacuate hydro power from Kindaruma and will increase security of electricity supply to Mwingi, Tana River and Garissa Districts and surrounding areas. This will in essence boost various sectors including agriculture; tourism; health; education, business (and especially small scale businesses); water and sanitation; security; etc.

2.4 Substation Design and Layout
The layout of the substation is very important since there should be a Security of Supply. In an ideal substation all circuits and equipment would be duplicated such that following a fault, or during maintenance, a connection remains available. Practically this is not feasible since the cost of Environmental & Social Impact Assessment Project implementing such a design is very high. Methods have been adopted to achieve a compromise between complete security of supply and capital investment.

The substations would include 132 kV switchgear, step-down transformers and 33 kV switchgear. The switchgear in the substations would be conventional outdoor air-insulated switchgear, both for 132 kV and 33 kV. Equipment for control, protection and auxiliary power will be housed in a small control building. The proposed substation layout consists essentially the arrangement of a number of switchgear components in an ordered pattern governed by their function and rules of spatial separation. The spatial separation will include:

- Earth clearance which is the clearance between live parts and earthed structures, walls, screens and ground,
- Phase clearance which is the clearance between live parts of different phases and
- Isolating distance which is the clearance between the terminals of an isolator and the connections thereto.

The section clearance is the clearance between live parts and the terminals of a work section. The limits of this work section, or maintenance zone, may be the ground or a platform from which the substation works are executed.

2.5 Construction Procedures

All construction activities including ground preparation, earth moving, materials delivery, building, walling, roofing and the installation of amenities (power, water, communication equipment, etc.), fittings (doors, windows, safety provisions, etc.) will be carried out by competent personnel obtained through rigorous tendering procedure to ensure the set quality standards and time lines are met.

2.5.1 Construction activities Outline

Construction activities will involve the following:

- Construction of the substation access road to the substation
- Removal of vegetation within substation footprint
- Terracing and levelling of the site
• Installation of foundations for infrastructure such as transformers, control room and radio tower
• Construction of bunds and oil holding dams (for emergency holding of transformer oil in the event of a spill)
• Compaction and filling with gravel of the areas between the foundations
• Creation of formal drainage and storm water control measures
• Delivery and installation of transformers, towers, busbar and associated infrastructure
• Construction of control room and administrative infrastructure
• Redirecting of the 132 kV line from Kindaruma to enter and leave the substation
• Construction of perimeter fencing and lighting

2.5.2 Input Materials
The 132/33 kV Mwingi substation will be constructed using conventional construction materials and construction procedures that are not expected to compromise the safety of the neighbouring communities as well as the general environment. The following inputs will be required for construction:
(i) Raw construction materials e.g. sand, cement, natural building stone blocks, hard core, gravel, concrete among others
(ii) Timber (e.g. doors and frames, fixed furniture, etc.),
(iii) Paints, solvents, white wash, etc.,
(iv) A construction labour force (of both skilled and unskilled workers).

2.6 Project Budget
The estimated cost of the project is approximately USD 3,700,000 (Three Million Seven Hundred thousand) which is approximately KShs 296,000,000 (Two Hundred and Ninety Six Million).

2.7 Target Group for the ESIA Report
The ESIA Report has been prepared for use by different stakeholders to be involved in the construction and operation of the proposed 132/33 kV of the transmission substation. The report contains useful information on policies and procedures to be adhered to, implementation modalities, analysis of potential environmental and social impacts and suggested mitigation measures at various stages of project activities. The information will be useful in planning, implementation, management and maintenance of the substation.
In this regard, the report is useful to the following stakeholders:

- Funding agencies and donors;
- Relevant government ministries and agencies for policy implementation;
- Affected and Interested persons;
- Planners and Engineers to be involved in preparation of designs and plans for the 132/33kV substations;
- Contractors to be engaged in the construction works for;
- People to be involved in the management and operation of the substation.

2.8 Analysis for Alternatives

One of the functions of the Environmental and Social Impact Assessment process is to describe and evaluate various alternatives to the proposed project. Alternatives examined during the study are discussed below;

2.8.1 The “Do Nothing” Option

For this project, the no-development option would mean the proposed substation will not be constructed. The implications of this would be no additional reliability and security of electricity supply to Mwingi, Garissa, Tana River and surrounding areas. Given that the community is highly supportive of the project, the level of impacts associated with the project are low and that there is high probability of mitigation of these negative impacts, the “no-go” option would not be the most viable option in this instance.

2.8.2 Alternative Designs

The cost of building a high voltage electricity step down substation is substantial. Detailed research and development of the design and components form an important part of the process of the substation construction. The current design for the 132/33kV substations at Mwingi is regarded as the most cost effective whilst operationally sound for such a project.

2.8.3 Demand-side Management Option

Demand Side Management (DSM) is a function carried out by the electricity supply utility aimed at encouraging a reduction in the amount of electricity used at peak times. This is achieved by influencing customer usage to improve efficiency and reduce overall demand. These efforts are intended to produce a flat load duration curve to ensure the most efficient use of installed network capacity. By reducing peak demand and shifting load from high load to low load periods, reductions in capital expenditure (for network capacity expansion) and operating costs can be achieved. One of the basic tools is the price differentiation (such as time-of-use tariffs) between peak demand time and low
demand time. This option is practiced to a certain extent, but is currently not considered feasible for managing the level of growth forecast for Rift Valley and Nairobi provinces.

2.8.4 Alternative Sites
Four alternative sites have been identified for the project implementation. An assessment of the sites has been done and based on willingness of owner to sell, the site at Kiomo has been considered optimal. The Proponent would therefore have to move with speed on land acquisition, design and approvals as they are site specific. In the optimal site (Kiomo) no relocation or resettlement of PAPs will be necessary and there are no sensitive ecosystems within or near the site.

2.8.5 Alternative Processes and Materials
Highly refined mineral insulting oils are used to cool transformers and provide electrical insulation between live components. Sulfur hexafluoride (SF₆) may also be used as a gas insulator for electrical switching equipment and in cables, tubular transmission lines and transformers. Polychlorinated Biphenyls (PCB) can be used as a dielectric fluid to provide electrical insulation. SF₆ is a greenhouse gas with a significantly higher Global Warming Potential (GWP) than carbon-dioxide. PCB is a highly toxic substance that is no longer commonly used for electrical insulation. For this project the proponent is advised to use mineral insulating oil for cooling and insulation and to minimize or completely stop the use of SF₆ and PCB.
CHAPTER 3: ENVIRONMENTAL SET-UP OF THE PROPOSED PROJECT AREA

NAROK NORTH STUDY AREA

1.1.1 Position And Size Of The District

Narok north district is situated in the south–Western of the country and lies in the southern part of Rift valley Province. It borders Narok South District to the south, Molo district to the North, Naivasha District to the Northeast and Kajiado District to east. It lies between Latitudes 0 78’ and 1 17’ south and Longitudes 36 54 and 36 08’ East. The District occupies a total area of 4,754.2 Km and is divided into three administrative division namely: Central, Olokurt and Mau.

1.1.2 Administrative and political units

The District is sub-divided into three division, twenty-six location and fifty–one sub-locations. Mau division has the highest number of location and sub-location while central Division has the least as shown in table 1. During the plan period, the administrative units remained constants.

Table 1: Area of the District by Administrative units

The District has one constituency namely Narok North constituency and it has two local authorities namely Narok county council and Narok town council which are divided into thirty-four (34) electoral wards. Narok Town Council covers a total area of about 692 km with a total population of about 50,000 people.

Table 2: political units by Local authority

1.1.3 Settlement patterns

Land use settlement pattern are based on the agro- ecological zones and are influenced by soil fertile and rainfall. The high-density settlement is along the hill masses of mau and Olokurto Divisions. They receive high rainfall and great agriculture potential and fertile soils. Spatial settlement is found in the low plains where ranching is carried out.
Settlement bis generally influenced by the agriculture potential and availability of social amenities and facilities.

1.2 Physiographic and natural conditions

1.2.1 Topographic Features

a) Terrain
The district has a varying topography with altitude ranging from 3,100 metres above sea level in the highlands (Sakutiek Hill) to 460 metres above sea level in the lowlands of Mosiro area. The highlands which consist of the upper Mau and Olokurt divisions have a high potential for Wheat.

CHAPTER 4: RELEVANT LEGISLATIVE AND REGULATORY FRAMEWORKS

4.1 Introduction
According to the Kenya National Environment Action Plan (NEAP, 1994) the Government recognized the negative impacts on ecosystems emanating from economic and social development programmes that disregarded environmental sustainability. Following on this, establishment of appropriate policies and legal guidelines as well as harmonization of the existing ones have been accomplished or is in the process of development. The NEAP process introduced environmental assessments in the country culminating into the enactment of the Policy on Environment and Development under the Sessional Paper No. 6 of 1999.
An EIA is a legal requirement in Kenya for all development projects. The Environmental Management and Co-ordination Act 1999, is the legislation that governs EIA studies. This project falls under the Second Schedule that lists the type of projects that are required to undergo EIA studies in accordance with section 58 (1-4) of the Act. Projects under the Second Schedule comprise those considered to pose potentially negative environmental impacts.

Kenyan law has made provisions for the establishment of the National Environment Management Authority (NEMA), which has the statutory mandate to supervise and co-ordinate all environmental activities. Policies and legislation highlighting the legal and administrative requirements pertinent to this study are presented below.

4.2 NATIONAL POLICY AND LEGAL FRAMEWORK

4.2.1 Policy

Kenya Government's environmental policy aims at integrating environmental aspects into national development plans. The broad objectives of the national environmental policy include:

- Optimal use of natural land and water resources in improving the quality of human environment
- Sustainable use of natural resources to meet the needs of the present generations while preserving their ability to meet the needs of future generations
- Conservation and management of the natural resources of Kenya including air, water, land, flora and fauna
- Promotion of environmental conservation through the sustainable use of natural resources to meet the needs of the present generations while preserving their ability to meet the needs of future generations
- Meeting national goals and international obligations by conserving bio-diversity, arresting desertification, mitigating effects of disasters, protecting the ozone layer and maintaining an ecological balance on earth.

4.2.2 Legal Framework

Application of national statutes and regulations on environmental conservation suggest that the Proponent has a legal duty and social responsibility to ensure that the proposed development be implemented without compromising the status of the environment,
natural resources, public health and safety. This position enhances the importance of this environmental impact assessment for the proposed site to provide a benchmark for its sustainable operation.

Kenya has approximately 77 statutes that relate to environmental concerns. Environmental management activities were previously implemented through a variety of instruments such as policy statements and sectoral laws as well as through permits and licenses. Most of these statutes are sector-specific, covering issues such as public health, soil erosion, protected areas, endangered species, water rights and water quality, air quality, noise and vibration, cultural, historical, scientific and archaeological sites, land use, resettlement, etc.

Some of the key national laws that govern the management of environmental resources in the country are hereby discussed however it is worth noting that wherever any of the laws contradict each other, the Environmental Management and Co-ordination Act 1999 prevails.

4.2.3 The Environment Management and Co-ordination Act, 1999

Provides for the establishment of appropriate legal and institutional framework for the management of the environment and related matters. Part II of the Environment Management & Coordination Act, 1999 states that every person in Kenya is entitled to a clean and healthy environment and has the duty to safeguard and enhance the environment. In order to partly ensure this is achieved, Part VI of the Act directs that any new programme, activity or operation should undergo environmental impact assessment and a report prepared for submission to the National Environmental Management Authority (NEMA), who in turn may issue an EIA license as appropriate. The approval process time frame for Project Reports is 45 days and for full EIA Study is 90 days.

This Project falls within Schedule 2 of EMCA 1999 and therefore requires an EIA. The Proponent has commissioned the environmental and social impact assessment study in compliance with the Act. The Proponent shall be required to commit to implementing the environmental management plan laid out in this report and any other conditions laid out by NEMA, prior to being issued an EIA license.
4.2.4 The Environmental (Impact Assessment and Audit) Regulations, 2003

The Regulation provides the guidelines that have been established to govern the conduct of environmental assessments and environmental audits in Kenya. The guidelines require that the EIA study be conducted in accordance with the issues and general guidelines spelt out in the Second and Third schedules. These include coverage of the issues on schedule 2 (ecological, social, landscape, land use and water considerations) and general guidelines on schedule 3 (impacts and their sources, project details, national legislation, mitigation measures, a management plan and environmental auditing schedules and procedures.

This Report complies with the requirements of the Environmental Regulations in the coverage of environmental issues, project details, impacts, legislation, mitigation measures, management plans and procedures. The Proponent shall be required to commit to implementing the environmental management plan laid out in this report and any other conditions laid out by NEMA.

4.2.5 The Occupational Health and Safety Act, 2007

This is an Act of Parliament to provide for the safety, health and welfare of workers and all persons lawfully present at workplaces, to provide for the establishment of the National Council for Occupational Safety and Health and for connected purposes. The Act has the following functions among others:

- Secures safety and health for people legally in all workplaces by minimization of exposure of workers to hazards (gases, fumes & vapors, energies, dangerous machinery/equipment, temperatures, and biological agents) at their workplaces.
- Prevents employment of children in workplaces where their safety and health is at risk.
- Encourages entrepreneurs to set achievable safety targets for their enterprises.
- Promotes reporting of workplace accidents, dangerous occurrences and ill health with a view to finding out their causes and preventing of similar occurrences in future.
- Promotes creation of a safety culture at workplaces through education and training in occupational safety and health.
Failure to comply with the OSHA, 2007 attracts penalties of up to KES 300,000 or 3 months jail term or both or penalties of KES 1,000,000 or 12 months jail term or both for cases where death occurs and is in consequence of the employer.

The report advises the Proponent on safety and health aspects, potential impacts, personnel responsible for implementation and monitoring, frequency of monitoring, and estimated cost, as a basic guideline for the management of Health and Safety issues in the proposed project.

4.2.6 Environmental Management and Coordination (Noise and Excessive Vibration Pollution Control) Regulations, 2009.

These Regulations determine that no person or activity shall make or cause to be made any loud, unreasonable, unnecessary or unusual noise that annoys, disturbs, injures or endangers the comfort, repose, health or safety of others and the environment. In determining whether noise is loud, unreasonable, unnecessary or unusual, the following factors may be considered:

- Time of the day;
- Proximity to residential area;
- Whether the noise is recurrent, intermittent or constant;
- The level and intensity of the noise;
- Whether the noise has been enhanced in level or range by any type of electronic or mechanical means; and,
- Whether the noise is subject to be controlled without unreasonable effort or expense to the person making the noise.

These regulations also relate noise to its vibrational effects and seek to ensure no harmful vibrations are caused by controlling the level of noise. Any person(s) intending to undertake activities in which noise suspected to be injurious or endangers the comfort, repose, health or safety of others and the environment must make an application to NEMA and acquire a license subject to payment of requisite fees and meeting the license conditions. Failure to comply with these regulations attracts a fine of KES 350,000 or 18 months jail term or both.

The Proponent shall observe policy and regulatory requirements and implement the measures proposed in this documenting an effort to comply with the provisions of the Regulations.
4.2.7 Draft Environmental Management and Coordination (Air Quality) Regulations, 2008

The objective of these Regulations is to provide for prevention, control and abatement of air pollution to ensure clean and healthy ambient air. The general prohibitions state that no person shall cause the emission of air pollutants listed under First Schedule (Priority air pollutants) to exceed the ambient air quality levels as required stipulated under the provisions of the Seventh Schedule (Emission limits for controlled and non-controlled facilities) and Second Schedule (Ambient air quality tolerance limits).

The Proponent shall observe policy and regulatory requirements and implement the mitigation measures proposed in this document in an effort to comply with the provisions of these Regulations on abatement of air pollution.

4.2.8 The Water Act 2002

The Act vests the water in the State and gives the provisions for the water management, including irrigation water, pollution, drainage, flood control and abstraction. It is the main legislation governing the use of water especially through water permit system.

Observation of the requirements of the act shall be observed by the Proponent especially during the construction phase.

4.2.9 The Lakes and Rivers Act Chapter 409 Laws of Kenya

This Act provides for protection of river, lakes and associated flora and fauna. The provisions of this Act may be applied in the management of the project.

The proposed project lies in a water deficit area with seasonal streams being the common mode of drainage. The requirements of this Act shall be observed by the Proponent to ensure protection of such water channels and associated flora and fauna.

4.2.10 The Public Health Act (Cap. 242)

The Act Provides for the securing of public health and recognizes the important role of water. It provides for prevention of water pollution by stakeholders, among them Local Authorities (county councils). It states that no person/institution shall cause nuisance or condition liable to be injurious or dangerous to human health.
The Proponent shall observe policy and regulatory requirements and implement measures to safeguard public health and safety.

4.2.11 Waste Management Regulations, 2006

The Waste Management Regulations are meant to streamline the handling, transportation and disposal of various types of waste. The aim of the Waste Management Regulations is to protect human health and the environment. The regulations place emphasis on waste minimization, cleaner production and segregation of waste at source.

The Proponent shall observe the guidelines as set out in the environmental management plan laid out in this report as well as the recommendation provided for mitigation/minimization/avoidance of adverse impacts arising from the Project activities.

4.2.12 Physical Planning Act (Cap286)

The Act provides for the preparation and implementation of physical development plans and for related purposes. It gives provisions for the development of local physical development plan for guiding and coordinating development of infrastructure facilities and services within the area of authority of County, municipal and town council and for specific control of the use and development of land.

The Proponent shall secure all mandatory approvals and permits as required by the law.

4.2.13 Occupiers Liability Act (Cap. 34)

Rules of Common Law regulates the duty which an occupier of premises owes to his visitors in respect of danger and risk due to the state of the premises or to things omitted or attributes an affliction on his/her health to a toxic materials in the premises.

The Proponent shall endeavour to ensure that the management of health and safety issues is of high priority during the operational phase of the project.

4.2.14 Land Acquisition Act (Cap. 295)

This Act provides for the compulsory or otherwise acquisition of land from private ownership for the benefit of the general public. Section 3 states that when the Minister is satisfied on the need for acquisition, notice will be issued through the Kenya Gazette
and copies delivered to all the persons affected. Full compensation for any damage resulting from the entry onto land to things such as survey upon necessary authorization will be undertaken in accordance with section 5 of the Act. Likewise where land is acquired compulsorily, full compensation shall be paid promptly to all persons affected in accordance to sections 8 and 10 along the following parameters:

- Area of land acquired,
- The value of the property in the opinion of the Commissioner of land (after valuation),
- Amount of the compensation payable,
- Market value of the property,
- Damages sustained from the severance of the land parcel from the land,
- Damages to other property in the process of acquiring the said land parcel,
- Consequences of changing residence or place of business by the land owners,
- Damages from diminution of profits of the land acquired.

The Proponent shall adhere to the requirements of the Act in the implementation of land acquisition.

4.2.15 The Registered Land Act Chapter 300 Laws of Kenya:
This Act provides for the absolute proprietorship over land (exclusive rights). Such land can be acquired by the state under the Land Acquisition Act in the project area.

The Proponent shall comply with the provisions of the Act in the acquisition of Registered Land.

4.2.16 The Land Adjudication Act Chapter 95 Laws of Kenya
This Act provides for ascertainment of interests prior to land registrations under the Registered Land Act.

The Proponent has undertaken a survey and commissioned a study which complies with the provisions of the Act. Public consultations have also been undertaken extensively in the affected project area.
4.2.17 The Standards Act Cap 496
The Act is meant to promote the standardization of the specification of commodities, and to provide for the standardization of commodities and codes of practice; to establish a Kenya Bureau of Standards, to define its functions and provide for its management and control. Code of practice is interpreted in the Act as a set of rules relating to the methods to be applied or the procedure to be adopted in connection with the construction, installation, testing, sampling, operation or use of any article, apparatus, instrument, device or process.

The Act contains various specifications touching on electrical products. The Proponent shall ensure that commodities and codes of practice utilized in the project adhere to the provisions of this Act.

4.2.18 The Antiquities and Monuments Act, 1983 Cap 215
The Act aim to preserve Kenya’s national heritage. Kenya is rich in its antiquities, monuments and cultural and natural sites which are spread all over the country. The National Museums of Kenya is the custodian of the country’s cultural heritage, its principal mission being to collect, document, preserve and enhance knowledge, appreciation, management and the use of these resources for the benefit of Kenya and the world. Through the National Museums of Kenya many of these sites are protected by law by having them gazetted under the Act.

The proponent shall follow due procedures on case of unearthing any antiquity.

4.2.19 The Civil Aviation Act, Cap 394
Under this Act, the Kenya Civil Aviation Authority (KCAA) has to authorize and approve the height of the mast for the purpose of ensuring the safety of flying aircraft over the proposed project area.

The Proponent shall comply with the provisions of the Act in seeking authorization from KCAA for the installation of the lattice steel self-supporting towers along the transmission line route.
4.2.20 The Environmental Management and Co-Ordination (Conservation of Biological Diversity and Resources, Access to Genetic Resources and Benefit Sharing) Regulations, 2006

The Act states that no person shall not engage in any activity that may have an adverse impact on any ecosystem, lead to the introduction of any exotic species, or lead to unsustainable use of natural resources, without an Environmental Impact Assessment License issued by the Authority under the Act.

The Proponent has commissioned this environmental assessment study and seeks to obtain an EIA License from the Authority (NEMA) in compliance with the Act; the environmental management plan included in this report provides guidelines for the mitigation of potentially adverse impacts on natural resources.

4.2.21 Environmental Management and Coordination (Controlled Substances) Regulation, 2007, Legal Notice No. 73

The Controlled Substances Regulations defines controlled substances and provides guidance on how to handle them. The regulations stipulate that controlled substances must be clearly labelled with among other words, “Controlled Substance-Not ozone friendly” to indicate that the substance or product is harmful to the ozone layer. Advertisement of such substances must carry the words, “Warning: Contains chemical materials or substances that deplete or have the potential to deplete the ozone layer.” Persons handling controlled substances are required to apply for a permit from NEMA.

Proponent will not use controlled substances in the operation of the project. Hazardous materials such as PCB based coolants will not be used in the transformers, capacitors, or other equipment.

4.2.22 Environmental Management and Coordination, Fossil Fuel Emission Control Regulation 2006

This Act deals with internal combustion engines, their emission standards, inspections etc.
The Proponent shall comply with the provisions of this Act. The environmental management plan included in this report provides guidelines on the management of air emissions from the combustion of petroleum products used.

This Act applies to all wetlands in Kenya whether occurring in private or public land. It contains provisions for the utilization of wetland resources in a sustainable manner compatible with the continued presence of wetlands and their hydrological, ecological, social and economic functions and services.

The Proponent shall comply with the provisions of the Act in protecting wetlands, preventing and controlling pollution and siltation in rivers.

4.2.29 Penal Code Act (Cap.63)
The Act states that if any person or institution that voluntarily corrupts or foils water for public springs or reservoirs, rendering it less fit for its ordinary use is guilty of an offence. Section 192 of the same Act says a person who makes or vitiates the atmosphere in any place to make it noxious to health of persons /institution is dwelling or business premises in the neighbourhood or those passing along public way, commit an offence.

The Proponent shall observe the guidelines as set out in the environmental management and monitoring plan laid out in this report as well as the recommendation provided for mitigation/minimization/avoidance of adverse impacts arising from the project activities.

4.2.30 Energy Act, 2006
The Act prescribes the manner with which licenses shall be obtained for generating, transmitting and distributing electricity. The provisions of this Act apply to every person or body of persons importing, exporting, generating, transmitting, distributing, supplying or using electrical energy; importing, exporting, transporting, refining, storing and selling petroleum or petroleum products; producing, transporting, distributing and supplying of any other form of energy, and to all works or apparatus for any or all of these purposes. The Act establishes an energy commission, which is expected to become the main policy maker and enforcer in the energy sector. This
commission among other things shall be responsible for issuing all the different licenses in the energy sector.

4.3 ADMINISTRATIVE FRAMEWORK

4.3.1 The National Environment Council

The National Environmental Council (the Council) is responsible for policy formulation and directions for the purposes of the Act. The Council also sets national goals and objectives, and determines policies and priorities for the protection of the environment.

4.3.2 The National Environment Management Authority

The responsibility of the National Environmental Management Authority (NEMA) is to exercise general supervision and co-ordination over all matters relating to the environment and to be the principal instrument of government in the implementation of all policies relating to the environment.

4.3.3 The Standards and Enforcement Review Committee

In addition to NEMA, EMCA 1999 provides for the establishment and enforcement of environmental quality standards to be set by a technical committee of NEMA known as the Standards and Enforcement Review Committee (SERC). A work plan was set up by SERC to include committees to draw up standards; these include the following:

- Water Quality Regulations
- Waste Management Regulations
- Controlled Substances Regulations
- Conservation of Biological Diversity
- Noise Regulations
- [Draft] Air Pollution Regulations

4.3.4 The Provincial and District Environment Committees

The Provincial and District Environmental Committees also contribute to decentralized environmental management and enable the participation of local communities. These environmental committees consist of the following:

- Representatives from all the ministries;
- Representatives from local authorities within the province/district;
- Two representatives from NGOs involved in environmental management in the
• Province/district;
• A representative of each regional development authority in the province/district.

4.3.5 The Public Complaints Committee
The Act (EMCA) has also established a Public Complaints Committee, which provides the administrative mechanism for addressing environmental harm. The Committee has the mandate to investigate complaints relating to environmental damage and degradation. Its members include representatives from the Law Society of Kenya, NGOs and the business community.

4.4 INTERNATIONAL ENVIRONMENTAL GUIDELINES
Kenya has ratified or acceded to numerous International treaties and conventions, as described below:

• Vienna Convention for the Protection of the Ozone Layer: Inter-governmental negotiations for an international agreement to phase out ozone depleting substances concluded in March 1985 with the adoption of this Convention to encourage Inter-governmental co-operation on research, systematic observation of the ozone layer, monitoring of CFC production and the exchange of Information.

• Montreal Protocol on Substances that Deplete the Ozone Layer: Adopted in September 1987 and intended to allow the revision of phase out schedules on the basis of periodic scientific and technological assessments, the Protocol was adjusted to accelerate the phase out schedules and has since been amended to Introduce other kinds of control measures and to add new controlled substances to the list.

• The Basel Convention: Sets an ultimate objective of stabilizing greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic (human-induced) interference with the climate system.

• Kyoto Protocol: Drawn up in 1997, pursuant to the objectives of the United Nations (UN) Framework Convention on Climate Change, in which the developed nations agreed to limit their greenhouse gas emissions, relative to the levels emitted in 1990.
This EIA is also based on internationally respected procedures recommended by the World Bank, covering environmental guidelines. Reference has been made to the Environmental Assessment Operational Policy (OP) 4.01, and Environmental Assessment Source Book Volume II, which provides the relevant sectoral guidelines as discussed below.

4.5 WORLD BANK’S SAFEGUARD POLICIES

The objective of the World Bank's environmental and social safeguard policies is to prevent and mitigate undue harm to people and their environment in the development process. These policies provide guidelines for bank and borrower staffs in the identification, preparation, and implementation of programs and projects. Safeguard policies have often provided a platform for the participation of stakeholders in project design, and have been an important instrument for building ownership among local populations. (World Bank, 1999-2006)

4.5.1 World Bank Safeguard Policy 4.01-Environmental Assessment

The environmental assessment process provides insights to ascertain the applicability of other WB safeguard policies to specific projects. This is especially the case for the policies on natural habitats, pest management, and physical cultural resources that are typically considered within the EA process. The policy describes an environmental assessment (EA) process for the proposed project. The breadth, depth, and type of analysis of the EA process depend on the nature, scale, and potential environmental impact of the proposed project. The policy favours preventive measures over mitigatory or compensatory measures, whenever feasible.

The operational principles of the policy require the environmental assessment process to undertake the following

- Evaluate adequacy of existing legal and institution framework including applicable international environmental agreements. This policy aims to ensure that projects contravening the agreements are not financed.
- Stakeholder consultation before and during project implementation
- Engage service of independent experts to undertake the environmental assessment
- Provide measures to link the environmental process and findings with studies of economics, financial, institutional, social and technical analysis of the proposed project.
- Develop programmes for strengthening of institutional capacity in environmental management
The requirements of the policy are similar to those of EMCA which aims to ensure sustainable project implementation. Most of the requirements of this safeguard policy have been responded to in this report by evaluating the impact of the project, its alternatives, existing legislative framework and public consultation.

4.5.2 Bank Safeguard Policy 4.04-Natural Habitats
This safeguard policy requires that the study use precautionary approach to natural resources management to ensure environmental sustainability. The policy requires conservation of critical habitat during project development. To ensure conservation and project sustainability the policy requires that:

- Project alternative be sought when working in fragile environment areas;
- Key stakeholders be engaged in project design, implementation, monitoring and evaluation including mitigation planning.

The requirements of this policy were observed as much as possible during the EIA study. The consulting team engaged several stakeholders during project impact evaluation and those consulted included the NEMA, WRMA, and KFS among others. This policy, however, will not be triggered by the proposed project as the project area has no protected forest and wildlife conservation areas.

4.5.3 Bank Safeguard Policy 4.09-Pest Management
This policy promotes the use of ecologically based biological or environmental pest management practices. The policy requires that procured pesticides should meet the WHO recommendations and not be among those on the restricted list of formulated products found in the WHO Classes IA and IB or Class II. This policy is not triggered since routine maintenance of project site will not involve the use of pesticides or agrochemical materials to control vegetation growth. In practice clearance of vegetation growth along way leave is done using mechanical methods especially slashing of grass.

4.5.4 Bank Safeguard Policy 4.12-Involuntary Resettlement
Resettlement due to infrastructure development is not a new phenomenon in Kenya but the government has no Policy Document or Act that aims at ensuring that persons who suffer displacement and resettlement arising from such development activities can be compensated adequately for their losses at replacement costs. The proponent plans to implement the World Bank’s Operational Policy 4.12 which has been designed to mitigate against impoverishment risks associated with Involuntary Resettlement and the restoration or improvement of income-earning capacity of the Project Affected People (PAP).
4.5.5 Bank Safeguard Policy 4.20-Indigenous People
This policy requires project to be designed and implemented in a way that fosters full respect for Indigenous Peoples’ dignity, human rights and cultural uniqueness and so that they receive culturally compatible social and economic benefits and do not suffer adverse effects during the development process. This policy is not triggered as the proposed project area is not occupied by IP who identifies with the areas.

4.5.6 World Bank Safeguard Policy BP 17.50- Public Disclosure
This BP encourages Public Disclosure (PD) or Involvement as a means of improving the planning and implementation process of projects. This procedure gives governmental agencies responsibility of monitoring and managing the environmental and social impacts of development projects particularly those impacting on natural resources and local communities. The policy provides information that ensures that effective PD is carried out by project proponents and their representatives. The BP requires that Public Involvement should be integrated with resettlement, compensation and indigenous peoples’ studies. Monitoring and grievances address mechanism should also be incorporated in the project plan.

The proposed project incorporated public participation and stakeholders’ consultation as part of the E&SIA studies in order to collect the views of the local communities and their leaders for incorporation in the project mitigation plan. The consultation was successful and the community members gave a number of views that have been considered in the mitigation plan.
CHAPTER 5: STAKEHOLDER CONSULTATION

5.1 Introduction
Stakeholder consultation was undertaken among people living around the proposed transmission substation as an integral part of the ESIA study. The public participation offers stakeholders the opportunity to learn about the project and to raise issues that they are concerned about and make suggestions and hence incorporate in the project development, implementation and operation. These meetings enabled interested and affected parties to contribute their concerns (views and opinions on the proposed project) which might have been overlooked during the scoping exercise. Findings of stakeholder analysis were very important in predicting impacts and development of EMP.

5.2 The specific objective of the consultation process
The objective of the consultation is to create awareness of the proposed project and to ask the local residents especially the interested and the affected parties about the problems they anticipate within the project area and how these can be overcome. To consult and gather recommendations from the local administrations e.g. DC, Dos, Chiefs, Assist Chiefs, councillors, village elders and the communities that have a stake in the project. The consultation also provides an opportunity to all the communities around the proposed site to raise issues and concerns pertaining to the project and allow the identification of alternatives and recommendations.

5.3 Identification of stakeholders
The proposed substation typically involves land acquisition for construction of permanent structures and/or infrastructure including transformers, towers, busbars, among other infrastructure. Communities living within the environs of the proposed site were identified as Project Affected Persons (PAP).

This study also identified a second category of stakeholders comprised of GoK officers in charge of diverse sectors, which are likely to be impacted by the project. This category was also consulted as key informants on sectoral policy and to advise the ESIA study on mitigation measures to be put in place so as to
minimize adverse impacts in respective sectors. This category also included local policy makers and opinion leaders, local administration, local authorities and civic leaders.

A third category of stakeholders identified were civil society groups which included CBOs, NGOs and various other associations.

5.4 Approaches to Stakeholder Consultations

Detailed stakeholders consultations for this study were undertaken from the 11th January to 22nd January 2011. These consultations were conducted in the form of:

5.4.1 Key Informant Interviews and questionnaires

The following people were consulted:
- Provincial Occupational Safety and Health Officer, Eastern province
- District Forest Officer, Kenya Forest Service, Mwingi District
- Warden, Kenya Wildlife Service, Mwingi District
- County Clerk, Mwingi Town Council
- District Physical Planning Officer, Mwingi District.
- District Commissioner, Mwingi District
- District Development Officer, Mwingi District
- District Agricultural Officer, Mwingi District
- District public Health Officer, Mwingi District.
- District Livestock Development Officer, Mwingi District
- District Officer, Mwingi central Division.
- Area CLLR, Kavuvwani/Kiomo
- Chief, Kavuvwani location
- Assistant chief, Kavuvwani
- Chief, Mwingi location
- Chief, Kiomo location
- Assistant chief Kiomo
5.4.2 Community questionnaires

Open-ended questionnaires were administered to households, and small business enterprises neighbouring the site. Concerns, views and opinions from a total of 20 respondents were received.

5.4.3 Public Barazas

A Public Barazas organized by the area chiefs and the District officer were held on 17th January 2011. A total of 80 community members attended the Barazas.

5.5 Results of the Stakeholder consultations

5.5.1: Minutes of a public Baraza held on 17th January 2011 at Kanginga Oasis Academy primary school in Kavuvwani location, Mwingi Central Division, Mwingi District, Kitui County.

Members present: 80 locals, 5 Area chiefs/Assistant chiefs, Area councillor, the District Officer Mwingi Central and 4 members of ESIA team (see attached list).

AGENDA:
- Introduction of the members present.
- Introduction of the project.
- Community’s opinions and concerns.
- Way forward and recommendations

The meeting started at 10:30 am and was conducted in Swahili and the local language (Kikamba). The main aim of the baraza was bring on board, the various stakeholders not only to update them on the proposed project (Mwingi 132/33 kv substation) but also to obtain their input, so that as a team, the study and the eventual project could be progressed without any stakeholder feeling left out. It’s also considered the concerns of the various stakeholders and to determine how best their concerns could be addressed and establish if the locals foresee any positive or negative environmental and social affect from the project and make suggestion on how they perceived impact be addressed.

The meeting was opened with a word of prayer from one of the elders, and then the Area Chief thanked the locals for coming and also thanked the proponent for choosing to construct the substation in the area due to its anticipated benefit. The
chief acknowledged the presence of other local chiefs of the area and the District officer which he asked the later to take over from him. The District officer, Central Division (Ms Serah), enlightened the people on the need for ESIA in new projects as a decision making tool. She asked the resident to participate fully in the discussion by asking questions regarding the proposed project to avoid conflict later especially when the construction kicks off. She then paved way for the ESIA team to address the residents and welcomed the team to the area on behalf of the D.C.

The ESIA team introduced themselves to the community and went ahead to introduce KETRACO as the project proponent. They gave a detail of KETRACO’s mandate and how it fits within the Vision 2030. The team then explained to the participants that the team had made a preliminary sites visit of the proposed sites, including location, design, purpose, duration and explained to the participants the benefits and some of the potential negative impacts that may occur as a result of the project. Participants were then invited to air their concerns, opinions and views.

Concerns raised by the community included:

- Compensation issues.
- Accrued benefits to the community.
- Asked how many farms and households will be affected.
- How safe would be the substation i.e. will you fence the substation.
- Elaboration of the benefits and negative impacts that would associate the project
- Where is the termination of the line
- Social network disruption.
- The criteria that would be used when offering the jobs i.e. the numbers and the minimum qualifications.
- Project commencement date.
- Whether the locals would be employed during and after the construction.
- Precautionary measures that would be taken in case of fire outbreak at the substation.

The ESIA team thanked the residents for their participation and responded to the highlighted concerns, informing the participants that the project like any other would have benefits and drawbacks. Some of the benefits highlighted were:
- General enhancement of the living standards to the residents.
- Improved health and education standards.
- Rise of both direct and indirect skilled and non-skilled employment opportunities in the area.
- Enhancement of other sectors including agriculture, trade, industry, education, health, water and sanitation, co-operative development and commerce etc.
- Access to cheap and reliable power.
- Increased security in the area, due to availability of reliable power supply.
- Introduction of small-scale businesses that depend on power availability. Examples; milling machines, saloons, mobile charging, car wash, cyber cafes, juakali industries among others.

The potential negative impacts included:
- Noise, dust, and vehicular emissions during construction
- Increased traffic during construction
- Possible incidences of electrocution.
- Disturbance of vegetation and habitats
- Community health and safety
- Rise in social vices especially during construction.
- Air and noise pollution during construction.
- Social network disruption
- Oil spillage during construction.

The ESIA team assured the residents that the proponent was conducting the ESIA to ensure all potential positive and negative impacts are identified and adequate mitigation measures to the negative impacts were formulated for implementation during the execution of the project.

They went further to explain the compensation procedures and assured participants that all those affected would get fair compensation and any affected person will be compensated before the project commences. This they said would be done with the help of local administration and the community would fully be involved.

In relation to job opportunities during the construction, the team assured them that the contractor is supposed to source the casual labourers from the area. In
addition, after the construction the security guards manning the substation and other unskilled labour would be sourced from the area too.
In response to precautionary measures that would be taken against the adverse impacts of the proposed substation, the ESIA team highlighted the following:

- Engage community in tree planting
- Ensure noise, dust, and air pollution are abated
- Building of a perimeter fence around the substation
- Periodic maintenance to ensure incidences of electrical systems overloads are rectified and monitor live naked wires.
- Train and employ security guards on safety measures in the substation
- To make sure that there will be no social network disruptions.

Finally, the area councillor gave a vote of thanks to the ESIA team and wished the project would take effect as soon as possible since he was foreseeing a new world of class in the area. Instance; most of the schools and the dispensaries in the area have no electricity and said the project would be at a position to offer extra services to the locals like x-rays, improved laboratory services in the health centres, longer working hours leading to more job creation among others. Therefore, in general the living standards in the area would be improved.
Having exhausted the agenda of the day and there being no other business, the D.O gave her closing remarks and the meeting ended with prayers at 1.40 pm.
5.5.2 Summary of issues raised in interviews and questionnaires.

Advantages of the project identified by respondents included:

- Access to cheap and reliable power supply.
- Job creation during the construction.
- Increased security in the area, due to availability of reliable power supply.
- Project is a manifestation of government commitment to development in the project area.
- Introduction of small-scale businesses that depend on power availability, for instance: mobile charging, juakali industries among others.
- Rise of both direct and indirect skilled and non-skilled employment opportunities in the area.
- The project would result in general enhancement of the living standards of the residents.

Disadvantages highlighted by respondents included;
• Presence of substation may expose people to accidents and health hazards.
• Possibility of losing grazing land
• Possibility of moving people from their land
• Shrines may be affected
• Possibility of water pollution from the oil spill
• Deforestation
• Soil erosion where evacuation is done on hill sides.
• Oil spillage during construction.
• Air and noise pollution.
• Increase in social vices due to influx of population in the project area as a result of emergence of new industries as well as general development in the area.

5.5.3 Specific view and concerns

Questions of power supply along the routes of transverse:
Stakeholders enquired on the possibility of communities in the project area to tap power supply from the 132/33kV substation as part of the company corporate social responsibility (ESR). This was seen as an incentive to win support for the project.

The ESIA team noted that, electricity to feed the substation would be brought to accessible distance in the project area and communities can benefit by connecting to the installed KPLC transformers by the proponent. Clarity was however given that the substation, at least for the time being, was a set up substation and getting power directly from the substation was not possible

Impact of vegetation removal on breeding and nesting patterns of fauna and avifauna.
It was observed that within the project area, just like other areas with varied ecological characteristics, birds mainly use trees for nesting and breeding in which case, removal of the latter for purposes of substation construction has potential to affect nesting and breeding.
In mitigation of this concern, the ESIA team noted that the proposed substation would sit on approximately three acres of the land and only this piece of land would be affected. The team further noted that, the proponent would partner with KFS and the community in tree planting.

Employment opportunities:
The community expressed fear that local youths may be side-lined in securing employment opportunities especially during the construction phase of the proposed project thus lock out the youth the opportunity of getting employment.

The ESIA team emphasized that locals will be given first priority in employment especially casual employment. As this may lead to unwarranted hostilities, the contractor will be advised to contract locals in the project area.

Occupational health and safety:
Some stakeholders especially the community were concerned about the possibility of occurrence of accidents such as electrocution and machine/vehicle messes during the construction and operation phase of the proposed project. Moreover, particulate matter may potentially impact on health of workers and neighbours during construction phase of the project.

In view of occupational health and safety concerns, the proponent should ensure health, safety of the locals and welfare of workers to prevent accidents in the course of employment. Additionally, regular sprinkling and provision of PPEs would militate against the impacts of dust and minimize exposure to a variety of hazards respectively.

5.5.4: Overall picture from the stakeholder consultations
The overall picture emergent from the stakeholder consultations is that the project is seen as being strategic to stabilising rural power supply which is crucial to sustained economic growth. In order to sustain this overwhelming public support, project development should proceed simultaneously with resolution of stakeholder concerns.
CHAPTER 6: ENVIRONMENTAL AND SOCIAL IMPACTS OF THE PROPOSED 132/333 kV MWINGI SUBSTATION

6.1 Introduction

A summary of the main potential impacts of the proposed project based on stakeholders’ views (annex III & IV), site assessment and the team’s previous experience in undertaking ESIAs is listed in Table 6.1 below.

Table 6.1: Summary of Potential Impacts

<table>
<thead>
<tr>
<th>Environmental & Social Impact</th>
<th>Positive/ Negative</th>
<th>Direct/ Indirect</th>
<th>Temporary/ Permanent</th>
<th>Major/ Minor</th>
<th>Occurrence</th>
<th>Construction</th>
<th>Operation</th>
<th>Decommissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity supply</td>
<td>Positive</td>
<td>Direct</td>
<td>Permanent</td>
<td>Major</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Employment opportunities</td>
<td>Positive</td>
<td>Direct</td>
<td>Permanent/ Temporary</td>
<td>Major</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gains in the Local and national economy</td>
<td>Positive</td>
<td>Direct</td>
<td>Permanent</td>
<td>Major</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Informal sectors benefits</td>
<td>Positive</td>
<td>Direct</td>
<td>Permanent</td>
<td>Major</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Development of other sectors such as health, education, construction, industries etc</td>
<td>Positive</td>
<td>Direct</td>
<td>Permanent</td>
<td>Major</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td>Positive</td>
<td>Direct</td>
<td>Permanent</td>
<td>Major</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Noise pollution & increased vibration</td>
<td>Negative</td>
<td>Direct</td>
<td>Permanent</td>
<td>Major</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Generation of exhaust emissions</td>
<td>Negative</td>
<td>Direct</td>
<td>Permanent</td>
<td>Minor</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Dust emissions</td>
<td>Negative</td>
<td>Direct</td>
<td>Temporary</td>
<td>Minor</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Solid and liquid waste generation</td>
<td>Negative</td>
<td>Direct</td>
<td>Permanent</td>
<td>Major</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Oil spills hazards</td>
<td>Negative</td>
<td>Direct</td>
<td>Permanent</td>
<td>Minor</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Destruction of existing vegetation and habitats</td>
<td>Negative</td>
<td>Direct</td>
<td>Permanent</td>
<td>Minor</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Disturbance of existing wildlife (fauna) species</td>
<td>Negative</td>
<td>Direct</td>
<td>Permanent</td>
<td>Minor</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Avifauna Mortality</td>
<td>Negative</td>
<td>Direct</td>
<td>Permanent</td>
<td>Minor</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Increased demand for material consumption</td>
<td>Negative</td>
<td>Direct</td>
<td>Permanent</td>
<td>Major</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
6.2 Positive Impacts
The positive impacts associated with the proposed 132/33 kV substation include;

6.2.1 Reliable and Secure Electricity Power Supply
The project will enhance the reliability and security of electricity supply in the region in addition to increasing the region’s power supply. This will help meet the increasing demand for power supply and minimize the frequency of power outages.

6.2.2 Employment Opportunities
The construction, operation and decommissioning of the proposed substation will create employment opportunities for both skilled and unskilled personnel. The proponent has committed to ensure that priority is given to the local community.

6.2.3 Gains in the Local and National Economy
Expected gains in the local and national economy from the construction and operation of the proposed project will be in the form of consumption of locally available materials including: timber, glass, metal, and cement among other construction materials; taxes levied from employees; and income from business associated with the project.
6.2.4 Informal Sector Benefits
The project will require supply of large quantities of building materials most of which will be sourced locally. It will also spur the growth of small business enterprises including kiosks to serve construction workers and employees, barbershops, posho mills, cell phone charging, photocopying shops among others.

6.2.5 Development of Other Sectors
Increase in reliability and security of power supply in the region will enhance efficiency and productivity of other sectors including health, education, water supply, agriculture and livestock production, industry, etc.

6.2.6 Security
With increased lighting in the area and presence of guards on the project site the security of the area will be enhanced.

6.3 Negative Impacts
The following negative impacts are also associated with the proposed substation

6.3.1 Noise Pollution
The construction and decommissioning works of the substation will most likely be noisy due to the moving machines (mixers, tippers, drilling etc) and incoming vehicles to deliver construction materials to site or take away debris.

6.3.2 Generation of Exhaust Emissions
Exhaust emissions are likely to be generated by the motored equipment during the construction and decommissioning phase of the proposed substation. Motor vehicles that will be used to ferry construction materials, take away debris during decommissioning phase or those used for general operation activities (operation phase) will also have impacts on air quality.

6.3.3 Dust Emissions
Dust emission is likely to occur during the site clearance, excavation and spreading of the topsoil during construction. They are also likely to occur during the
decommissioning phase. Motor vehicles accessing the site may also lead to dust emissions.

6.3.4 Solid and Liquid Waste Generation
It is expected that solid waste will be generated in all phases of the project. The generated waste will include; drums, paper, plastic, cables, metal, transformers, capacitors, drywall, wood, glass, paints, adhesives, sealants, fasteners, wastewater, etc.

6.3.5 Oil Spill Hazards
Motorized machinery on the proposed site may be containing moving parts which will require continuous oiling to minimise the usual corrosion or wear and tear. There is also a potential for oil spills and accidents during oil transportation, storage and operations of the transformers and batteries.

6.3.6 Destruction of Existing Vegetation and Habitats
The proposed site is designated agricultural and presently serves as crop land for both annual (maize, millet) crops and fruit trees such as mangoes. Existing natural vegetation is predominantly *Acacia spp*. Other trees on the sites include *yellow acacia, Acacia tortilis, Thorinini, Salvadoria persica, croton megalocarpus* and various species of *euphorbia*. Found on the site include and the short *Acacia tortilis*, but also present were *Parkinsonia aculeata, Grewia tembensis* and *Commiphora africana*. Construction of the substation will result in clearing of some of these existing vegetation and habitats on the portion where the substation will sit. This will not be more than 3 acres of the 15 piece of land to be acquired by the proponent.

6.3.7 Avifauna Mortalities
Site assessment revealed presence of various species of avifauna. Avifauna mortalities associated with similar projects have previously been reported.

6.3.8 Increased Demand for Material Consumption
During the life of the project water, energy and construction materials will be used. This will have an impact on the availability of these materials.
6.3.9 Impacts on Workers’ and Community Health and Safety
Workers in the substation may be exposed to various risks and hazards including slips and trips, falls, flammable and explosive substance, electrical shocks, dust, noise and vibrations, poor hygiene, fire, bruises and cuts, etc.

6.3.10 Soil Erosion
There are possibilities of soil erosion occurring during the construction of the substation especially during rainy and windy seasons.

6.3.11 Fire Outbreaks
The area where the substation will be constructed is semi arid –arid and prone to wild fires during the dry seasons. Fire due to electrical faults and flammable substance in the substation is a possible effect of the proposed project. Fires started outside the substation may also spread into the substation.

6.3.12 Visual and Aesthetic Impacts
The physical presence and profile of the proposed project will alter the visual and aesthetic effects of the surrounding area.

6.3.13 Incidences of Electrocution
Since the proposed project will be dealing with electricity, workers and other people who gain access to the substation risk being electrocuted or receiving electric shocks.

6.3.14 Perceived Danger of Electrostatic and Magnetic force
Electric substations are considered a source of power frequency, electric and magnetic fields, which may have a perceived health effect. The strength of both electric and magnetic fields is a function of the voltage and the lateral distance from the substation to the receptor. Many studies published during the last decade on occupational exposure to Electro-Magnetic Fields (EMF) have exhibited a number of inconsistencies and no clear, convincing evidence exists to show that residential exposures to electric and magnetic fields are a threat to human health. However, the EMF decrease very rapidly with distance from source and there should be no potential health risks for people living outside of 60 m from the substation.
6.3.15 Increase in Social Vices

With an increase in the population of the area boosted by the project employees the social set up of the area will be affected. This change may be in the form of loose morality, an increase in school drop-out due to cheap labour, child labour, and increased incidences of HIV/AIDS and other communicable diseases.

6.3.16 Land take – Loss of Use

The project site is currently agricultural but will change to substation. Relocation will not be necessary as the land is expansive thus sparsely populated. Moreover, the Proponent will avoid land that is already settled in acquiring land for the substations. However, on the location where the substation will be sited, local communities, predominantly Akamba and Somali may lose agricultural and grazing land respectively.

6.4 Proposed Mitigation Measures

The following are proposed mitigation measures to avoid, offset or minimize the identified negative impacts.

6.4.1 Noise Pollution

Ensure that noise levels emanating from machinery, vehicles and noisy construction activities (e.g. excavation, blasting) are kept at a minimum for the safety, health and protection of workers within the vicinity of site and nearby communities. The contractor will adhere to the EMCA Noise and Excessive Vibration Pollution Control Regulation, 2009 and will be required to implement noise control measures amongst exposed workforce and community. This will include provision of hearing protective devices such as ear plugs and ear muffs; avoiding construction or demolition activities during the night, education and awareness programmes and creation of a buffer to propagate against noise pollution among other noise control measures.

6.4.2 Generation of Exhaust Emissions

To mitigate against exhaust emissions, the proponent is advised to sensitise truck drivers and machine operators to switch off engines when not in use; regularly service engines and machine parts to increase their efficiency and reduce generation of exhaust emission; and where feasible use alternative non-fuel construction equipment.
6.4.3 Dust Emissions
The proponent will endeavour to minimize the effect of dust on the surrounding environment resulting from site clearance, excavation, spreading of the topsoil, demolition works and temporary access roads to ensure protection of health and safety of workers and communities. Control measures will include, use of PPE; regular sprinkling of water on dusty areas and temporary access roads; and observing set speed limits among other measures.

6.4.4 Solid and Liquid Waste Generation
To avoid waste generation or to minimize the amount of waste generated, the following measures are recommended; use of an integrated solid waste management system i.e. the 3 R’s: Reduction at source, Reuse and Recycle; accurately estimate the dimensions and quantities of materials required; use of durable, long-lasting materials that will not need to be replaced as often, thereby reducing the amount of construction waste generated over time; providing facilities for proper handling and storage of construction materials to reduce the amount of waste caused by damage; use of building materials that have minimal or no packaging to avoid the generation of excessive packaging waste; providing waste collection bins at designated points on site; disposing waste more responsibly by contracting a registered waste handler who will dispose the waste at designated sites or landfills only and in accordance with the existing laws. In addition all drainage and effluent from storage areas, workshops and camp sites shall be captured and treated before being discharged into the drainage system in line with applicable government water pollution control regulations; construction waste shall not be left in stockpiles along the road, but removed and reused or disposed of on a regular basis; and proper procedures for the management of human waste will be put in place in order to prevent outbreak of diseases; place in strategic places signs against littering and dumping of wastes; audits waste generation and develop Waste Reduction Action Plans (WRAP).

6.4.5 Oil Spill Hazards
The proponent will endeavour to prevent petroleum products used in the substation which include bitumen, oils, lubricants and gasoline from contaminating soils and water resources (ground and surface water). To accomplish this, the proponent will; install oil trapping equipment in areas where there is a likelihood of oil spillage; collect the used oils and re-use, re-sell, or dispose of appropriately using expertise from licenced waste
handlers; prepare a written substation response plan and display it on strategic areas and train workers on specific procedures to be followed in the event of a spill; immediately institute clean up measures in case of an oil spill; design the substation to have spill prevention and detection systems to protect the environment especially where the transformers will be located; design appropriate protection devices against accidental discharge of transformer oil substances; route drains through an oil/water separator; ensure regular inspection and maintenance of the transformers to minimize spillage; ensure that all waste oils from maintenance of transformers and other associated equipment should be segregated and disposed properly by a reputable/registered waste handler in accordance with the waste disposal plan.

6.4.6 Destruction of Existing Vegetation and Habitats
To minimize destruction of existing vegetation and habitats, the proponent will; avoid unnecessary vegetation clearing; ensure proper demarcation and delineation of the project area to be affected by construction works; specify locations for trailers and equipment, and areas of the site which should be kept free of traffic, equipment, and storage; with assistance from community, KFS, initiate a tree planting exercise on the unused 15 acre piece of land; design and implement an appropriate landscaping programme for the substation site; and support community initiatives in tree planting.

6.4.7 Avifauna Mortalities
To minimize bird collisions leading to their mortality, the proponent will undertake wire marking to alert birds of the presence of power lines, allowing them time to avoid collision and will build raptor platforms for bird roosting and nesting

6.4.8 Increased Demand for Material Consumption
To ensure minimal demand for material consumption, the proponent will; harness rainwater and storm-water whenever possible for use in dust prevention and gardening; promote recycling and reuse of water as much as possible; promptly detect and repair water pipe and tank leaks; sensitise construction workers to conserve water by avoiding unnecessary use; ensure taps are not running when not in use; switch off electrical equipment, appliances and lights when not being used; install occupation sensing lighting at various locations such as storage areas which are not in use all the time; install energy saving fluorescent tubes at all lighting points within the substation instead of bulbs which consume higher electric energy; monitor energy use during the operation
of the project and set targets for efficient energy use; sensitise the substation workers to be energy efficient; ensure accurate budgeting and estimation of actual construction material requirements to ensure that the least amount of material necessary is ordered; ensure that damage or loss of materials at the construction site is kept to a minimum through proper storage and use; encourage material recycling.

6.4.9 Impacts on Workers’ and Community Health and Safety
The proponent will implement all necessary measures to ensure health and safety of the substation workers and the general public during construction, operation and decommissioning of the proposed substation as stipulated in the Occupational Safety and Health Act, 2007.

6.4.10 Soil Erosion
To reduce soil erosion, the proponent will; apply soil erosion control measures such as levelling of the project site to reduce run-off velocity and increase infiltration of storm water into the soil; ensure that construction vehicles are restricted to use existing graded roads; ensure that any compacted areas are ripped to reduce run-off; develop and implement a storm water management plan that minimizes impervious area infiltration by use of recharge areas and use of detention and/or retention with graduated outlet control structure will be designed.

6.4.11 Fire Outbreaks
To mitigate against fire outbreaks, the proponent will; ensure compliance with fire safety regulations and install all necessary fire safety equipment; conduct regular trainings and fire drills to employees; conduct periodic maintenance to ensure that, there are; no overloaded electrical systems; no incorrectly installed wiring; no live naked wires; and fuel store areas are continuously monitored; create fire breaks (ploughed strips) on strategic areas of the 100 acre piece of land to prevent fire spreading to other pasture lands or from pasture lands to the substation; build capacity for community on fire related issues including fighting and vigilance.

6.4.12 Visual and Aesthetic Impacts
To reduce impacts on visual and aesthetic values of the area, the project proponent will; undertake extensive public consultation during the planning of the substation; design
structures at the site in such a way as to improve the beauty of the surroundings; restore site area through backfilling, landscaping and planting of trees, shrubs and grass on the open spaces to re-introduce visual barriers; design and implement an appropriate landscaping programme.

6.4.13 Incidences of Electrocution
To reduce incidences of electrocution, the proponent will; put in place a maintenance system to ensure physical integrity of substation equipment is maintained; deactivate and properly ground live wires before repair works are performed; ensure that live wire works is conducted by trained personnel; ensure that access to the substation should only be by authorization and trained personnel; erect a perimeter fence to deny unauthorized people access the substation; place warning signs on strategic places; conduct periodic awareness and sensitization campaigns for the neighbouring communities.

6.4.14 Perceived Danger of Electrostatic and Magnetic force
The proponent will conduct education and awareness campaigns to dispel fear among community on the effects of electrostatic and magnetic forces

6.4.15 Increase in Social Vices
To minimize project effects on local social set up, the proponent will; conduct periodic sensitization forums for employees on ethics, morals, general good behaviour and the need for the project to co-exist with the neighbours; offer guidance and counselling on HIV/AIDS and other STDs to employees; provide condoms to employees; and ensure enforcement of KETRACO’s policy on sexual harassment and abuse of office.

6.4.16 Land take – Loss of Use
To allow animal grazing (farm and wildlife), the proponent will only fence the section of the land where the substation sits leaving the rest of the 100 acre piece of land unfenced.
CHAPTER 7: ENVIRONMENTAL MANAGEMENT PLAN (EMP)

Table 7.1: Environmental Management Plan during the construction phase of the proposed 132/33 kV substation at Mwingi

<table>
<thead>
<tr>
<th>Potential Negative Impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Minimization of Noise and Vibration</td>
<td>1. Sensitise construction vehicle drivers and machinery operators to switch off engines of vehicles or machinery not being used.</td>
<td>KETRACO & Contractor</td>
<td>Entire construction period</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Sensitise construction drivers to avoid running of vehicle engines or hooting</td>
<td>KETRACO & Contractor</td>
<td>Entire construction period</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3. Regular servicing of engines and machine parts to reduce noise generation</td>
<td>KETRACO & Contractor</td>
<td>Entire construction period</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4. Ensure that all generators and heavy duty equipment are insulated or placed in enclosures (containers) to minimize ambient noise levels.</td>
<td>KETRACO & Contractor</td>
<td>Entire construction period</td>
<td>Design cost</td>
</tr>
<tr>
<td>Noise and vibration</td>
<td>5. Trees to be planted around the site to provide some buffer against noise propagation</td>
<td>KETRACO & Contractor</td>
<td>Entire construction period</td>
<td>10,000</td>
</tr>
<tr>
<td>Potential Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>6. The noisy construction works will entirely be planned to be during day time when most of the neighbours will be at work.</td>
<td>KETRACO & Contractor</td>
<td>Entire construction period</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7. Provide necessary PPE to workers who may be exposed to high levels of noise and ensure proper and constant use</td>
<td>KETRACO & Contractor</td>
<td>Entire construction period</td>
<td>Ear plugs and ear muff @500 each</td>
</tr>
<tr>
<td></td>
<td>8. All construction equipment and machinery to be used must be tested to verify if they are compliant with Kenya and the internationally acceptable standards of noise.</td>
<td>KETRACO & Contractor</td>
<td>Entire construction period</td>
<td></td>
</tr>
</tbody>
</table>

2. Abate Air Pollution

<p>| Dust emission | 1. Ensure strict enforcement of on-site speed limit regulations | KETRACO & Contractor | Entire construction period | 0 |
| | 2. Avoid excavation works in extremely dry weather | KETRACO & Contractor | Entire construction period | 0 |
| | 3. Sprinkle water on graded access routes when necessary to reduce dust generation by construction and vehicles | KETRACO & Contractor | Entire construction period | 10,000 |
| | 4. Stockpiles of earth should be enclosed / covered / watered during dry or windy conditions to reduce dust emissions | KETRACO & Contractor | Entire construction period | 0 |</p>
<table>
<thead>
<tr>
<th>Potential Negative Impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5. PPE to be provided to employees and ensure proper and constant use</td>
<td></td>
<td></td>
<td>Dust coats and dust masks@3000 per employee</td>
</tr>
<tr>
<td></td>
<td>Exhaust emission</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1. Sensitise truck drivers and machine operators to switch off engines when not in use</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Regular servicing of engines and machine parts to reduce exhaust emission generation</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3. Alternative non-fuel construction equipment shall be used where feasible</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3. Minimize solid and liquid waste generation and ensure efficient waste management during construction</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1. Use of an integrated solid waste management system i.e. the 3 R’s: 1. Reduction at source 2. Reuse 3. Recycle</td>
<td>KETRACO and Contractor</td>
<td>Entire construction period</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Accurate estimation of the dimensions and quantities of materials required.</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3. Use of durable, long-lasting materials that will not need to be replaced as often, thereby reducing the amount of construction waste generated over time</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Increased solid waste generation</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Potential Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>4. Provide facilities for proper handling and storage of construction materials to reduce the amount of waste caused by damage</td>
<td></td>
<td></td>
<td>Design cost</td>
</tr>
<tr>
<td></td>
<td>5. Use building materials that have minimal or no packaging to avoid the generation of excessive packaging waste</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6. Reuse packaging materials such as cartons, cement bags, empty metal and plastic containers to reduce waste at site</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7. Waste collection bins to be provided at designated points on site</td>
<td></td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>8. Dispose waste more responsibly by contracting a registered waste handler who will dispose the waste at designated sites or landfills only and in accordance with the existing laws.</td>
<td></td>
<td></td>
<td>10,000/month</td>
</tr>
<tr>
<td>Generation of wastewater</td>
<td>1. Provide means for handling sewage generated at the construction site</td>
<td>KETRACO and Contractor</td>
<td>One-off</td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td>2. Conduct regular checks for sewage pipe blockages or damages since such vices can lead to release of the effluent into the land and water bodies</td>
<td></td>
<td>Entire construction period</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3. Monitor effluent quality regularly to ensure that the stipulated discharge rules and standards are not violated</td>
<td></td>
<td>6,000 - quarterly</td>
<td></td>
</tr>
<tr>
<td>Potential Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>4. Minimize Oil Spills</td>
<td>1. Install oil trapping equipment in areas where there is a likelihood of oil spillage e.g. during maintenance of vehicles.</td>
<td>KETRACO and Contractor</td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. In case of an oil spill, immediate clean up measures will be instituted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Storage and liquid impoundment areas for fuels, raw and in-process material solvents, wastes and finished products should be designed with secondary containment to prevent spills and the contamination of soil, ground and surface water</td>
<td></td>
<td>One-off</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>4. A written substation response plan should be prepared and retained on the site and the workers should be trained to follow specific procedures in the event of a spill.</td>
<td></td>
<td>One-off</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5. Collected used oils should be re-used, disposed of appropriately by licenced waste handlers, or be sold for reuse to licensed firms</td>
<td></td>
<td>Continuous</td>
<td>5,000 per month</td>
</tr>
</tbody>
</table>

| Oil spills Hazards | | | | |

<p>| 5. Minimize vegetation disturbance at and or around construction site |
|---|--|---------------------------------|--------------|------------|
| Destruction of existing | 1. Avoid unnecessary vegetation clearing | KETRACO and | Continuous | 0 |</p>
<table>
<thead>
<tr>
<th>Potential Negative Impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vegetation and habitat</td>
<td>2. Ensure proper demarcation and delineation of the project area to be affected by construction works. Of the 15 acres not more than 3 acres should be affected
3. Specify locations for trailers and equipment, and areas of the site which should be kept free of traffic, equipment, and storage.
3. Designate access routes and parking within the site.
4. With Assistant from community, KWS and KFS, initiate a tree planting exercise on the un-used 15 acre piece of land
5. Design and implement an appropriate landscaping programme for the substation site.
6. Support community initiatives in tree planting</td>
<td>Contractor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contractor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contractor</td>
<td>Entire construction period</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KETRACO and community</td>
<td>Entire project period</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>6. Reduce demand for material consumption and ensure efficiency in material consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased Water Demand</td>
<td>1. Harness rainwater and storm-water whenever possible for use in dust prevention, gardening and other site specific uses</td>
<td>KETRACO & Contractor</td>
<td>Entire construction period</td>
<td>5,000</td>
</tr>
<tr>
<td>Potential Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>-----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>Increased energy consumption</td>
<td>KETRACO and Contractor</td>
<td>Entire construction period</td>
<td>5,000</td>
</tr>
<tr>
<td></td>
<td>1. Ensure electrical equipment, appliances and lights are switched off when not being used</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Install energy saving bulbs/tubes at all lighting points instead of incandescent bulbs which consume higher electric energy</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3. Plan well for transportation of materials to ensure that fossil fuels (diesel, transformer oil, petrol) are not consumed in excessive amounts</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4. Monitor energy use during construction and set targets for reduction of energy use.</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Potential Negative Impacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Install water conserving taps that turn-off automatically when water is not being used</td>
<td></td>
<td></td>
<td>40% more than price of ordinary taps</td>
</tr>
<tr>
<td></td>
<td>3. Promote recycling and reuse of water as much as possible</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4. Promptly detect and repair water pipe and tank leaks</td>
<td></td>
<td></td>
<td>1,000 per month</td>
</tr>
<tr>
<td></td>
<td>5. Sensitise construction workers to conserve water by avoiding unnecessary use.</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6. Ensure taps are not running when not in use</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Potential Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Demand of Raw material | 1. Ensure accurate budgeting and estimation of actual construction material requirements to ensure that the least amount of material necessary is ordered.
2. Ensure that damage or loss of materials at the construction site is kept to a minimum through proper storage and use.
3. Encourage material recycling | KETRACO & Contractor | Entire construction period | 0 |
| Impacts on workers’ and community health and safety | 1. Ensure strict compliance with the Occupational Safety and Health Act (OSHA) 2007
2. Prohibit access by unauthorized personnel into the construction site
3. Train all employees and regularly sensitize them on safe working procedures
4. Periodic community sensitization of the dangers posed by the project
5. Place warning signs where necessary
6. Provide necessary PPEs to workers | KETRACO, DOHSS and Contractor | Entire construction period | 100,000 |
<p>| | | | Quarterly during the entire construction period | 50,000 |
| | | | Whenever necessary | 10,000 |
| | | | Continuous | 10,000 |</p>
<table>
<thead>
<tr>
<th>Potential Negative Impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7. Erect a perimeter fence to enclose the substation</td>
<td></td>
<td>One-time off</td>
<td>Design cost</td>
</tr>
<tr>
<td>8. Reduce soil erosion and storm-water runoff</td>
<td>1. Surface runoff and roof water shall be harvested and stored in tanks so that it can be used for cleaning purposes.</td>
<td>KETRACO and Contractor</td>
<td>Entire construction period</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>2. A storm water management plan that minimizes impervious area infiltration by use of recharge areas and use of detention and/or retention with graduated outlet control structure will be designed.</td>
<td></td>
<td>First quarter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Apply soil erosion control measures such as levelling of the project site to reduce run-off velocity and increase infiltration of storm water into the soil.</td>
<td></td>
<td>Entire construction period</td>
<td>40,000</td>
</tr>
<tr>
<td></td>
<td>4. Ensure that construction vehicles are restricted to use existing graded roads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Ensure that any compacted areas are ripped to reduce run-off.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Roof catchments will be used to collect the storm water for some substation uses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Construction of water pans to collect storm water for substation use, tree planting and landscaping.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Fire outbreaks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Fire safety</td>
<td>1. Conduct a fire risk assessment</td>
<td>KETRACO, DOHSS</td>
<td>First quarter</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Ensure compliance with fire safety regulations and install all necessary fire safety equipment</td>
<td>KETRACO, DOHSS and Contractor</td>
<td>Entire construction period</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td>3. Conduct regular trainings and fire drills for employees</td>
<td>KETRACO, DOHSS and Contractor</td>
<td>Entire construction period</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>4. Periodic maintenance to ensure that, there are: no overloaded electrical systems; no incorrectly installed wiring; no live naked wires; and fuel store areas are continuously monitored</td>
<td>KETRACO and DOHSS</td>
<td>Entire construction period</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5. Create fire breaks (ploughed strips) on strategic areas of the 100 acre piece of land to prevent fire spreading to other pasture lands or from pasture lands to the substation</td>
<td>KETRACO</td>
<td>Continuous</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td>6. Build capacity for community on fire related issues including fighting and vigilance</td>
<td>KETRACO and Community</td>
<td>Continuous</td>
<td>5,000 per session</td>
</tr>
</tbody>
</table>

10. Visual and aesthetic impacts

<table>
<thead>
<tr>
<th>Visual and aesthetic impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Extensive public consultation during the planning of the substation</td>
<td>KETRACO and community</td>
<td>Planning phase</td>
<td>5,000</td>
</tr>
<tr>
<td>Potential Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>2. Structures at the site should be designed in such a way that they will improve the beauty of the surroundings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Restore site area through backfilling, landscaping and planting of trees, shrubs and grass on the open spaces to re-introduce visual barriers,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Design and implement an appropriate landscaping programme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Increase in social vices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Periodic sensitization forums for employees on ethics, morals; general good behaviour and the need for the project to co-exist with the neighbours</td>
<td>Contractor</td>
<td>Entire construction period</td>
<td>0</td>
</tr>
<tr>
<td>Increase in social vices</td>
<td>2. Guidance and counselling on HIV/AIDS and other STDs to employees</td>
<td>KETRACO and contractor</td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td>including HIV/AIDS</td>
<td>3. Provision of condoms</td>
<td></td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>4. Contractor to have a strong policy on sexual harassment and abuse of office guided by proponent’s policy on the same</td>
<td>Contractor</td>
<td>Quarter one</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>12. Land take – loss of use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Loss of use of land</td>
<td>1. Only fence the section of the land where the substation sits leaving the rest of the 100 acre piece of land un-fenced to allow animal (farm and wildlife) grazing</td>
<td>KETRACO</td>
<td>Continuous</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 7.2: Environmental management Plan for the operation phase of the proposed 132/33 kV substation

<table>
<thead>
<tr>
<th>Expected Negative Impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Abate Air Pollution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation of exhaust emission</td>
<td>1. Vehicle idling time shall be minimised</td>
<td>KETRACO</td>
<td>Entire implementation time</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Regular servicing of engines and machine parts to reduce exhaust emission generation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Minimization of solid and liquid waste generation and ensuring more efficient waste management</td>
<td>1. Use of an integrated solid waste management system i.e. the 3 R’s: Reduction at source 2. Reuse 3. Recycle</td>
<td>KETRACO</td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Provide solid waste handling facilities such as rubbish bags and skips</td>
<td></td>
<td>One-off</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>3. Ensure that wastes generated at the substation are efficiently managed through recycling, reuse and proper disposal procedures.</td>
<td></td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4. A private licensed company to be contracted to collect and dispose solid waste on regular intervals</td>
<td></td>
<td></td>
<td>30,000 /year</td>
</tr>
<tr>
<td></td>
<td>5. Place in strategic places signs against littering and dumping of wastes</td>
<td></td>
<td></td>
<td>5,000 /year</td>
</tr>
<tr>
<td></td>
<td>6. Audits on waste generation and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Liquid waste generation</td>
<td>development of Waste Reduction Action Plans (WRAP)</td>
<td></td>
<td></td>
<td>To be determined</td>
</tr>
<tr>
<td>1.</td>
<td>Conduct regular checks for sewage pipe blockages or damages since such vices can lead to release of the effluent into the land and water bodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Monitor effluent quality regularly to ensure that the stipulated discharge rules and standards are not violated</td>
<td>KETRACO</td>
<td>Continuous</td>
<td>20,000 / annum</td>
</tr>
<tr>
<td>3.</td>
<td>Audits on liquid waste generation and development of liquid Waste Reduction Action Plans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release of sewage into the environment</td>
<td>1. Provide adequate and safe means of handling sewage generated at the substation</td>
<td></td>
<td>One-off</td>
<td>40,000</td>
</tr>
<tr>
<td>2.</td>
<td>Conduct regular inspections for sewage pipe blockages or damages and fix appropriately</td>
<td>KETRACO</td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>Ensure regular monitoring of the sewage discharged from the project to ensure that the stipulated sewage/effluent discharge rules and standards are not violated</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3. Minimize Oil Spills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Oil spills Hazards</td>
<td>1. Install oil trapping equipment in areas where there is a likelihood of oil spillage e.g. during maintenance of vehicles</td>
<td>KETRACO</td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. In case of an oil spill, immediate clean up measures will be instituted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. The substation should be designed with spill prevention and detection systems to protect the environment especially where the transformers will be located.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Design appropriate protection devices against accidental discharge of transformer oil substances.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. The substation design should provide adequate storage areas for the transformer oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Drains should be routed through an oil/water separator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Frequent inspection and maintenance of the transformers should be done to minimize spilling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expected Negative Impacts

<table>
<thead>
<tr>
<th>Expected Negative Impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8. A written substation response plan should be prepared and retained on the site and the workers should be trained to follow specific procedures in the event of a spill.</td>
<td></td>
<td>One-off</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9. The substation operator should ensure the proper containment or collection and disposal for the waste oil or used oil</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10. All waste oils from maintenance of transformers and other associated equipment should be segregated and disposed properly by a reputable/registered waste handler in accordance with the waste disposal plan.</td>
<td></td>
<td>Continuous</td>
<td>20,000/year</td>
</tr>
<tr>
<td></td>
<td>11. Storage and liquid impoundment areas for fuels, raw and in-process material solvents, wastes and finished products should be designed with secondary containment to prevent spills and the contamination of soil, ground and surface water.</td>
<td></td>
<td>One-off</td>
<td>Project construction cost</td>
</tr>
</tbody>
</table>

4. Avifauna mortality
<table>
<thead>
<tr>
<th>Expected Negative Impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
</table>
| Substation related avifauna mortalities | 1. To minimize collisions, undertake wire marking to alert birds to the presence of power lines, allowing them time to avoid the collision
2. Build raptors platforms for bird roosting and nesting | KETRACO | One-off | Part of construction cost |
| 5. Reduce demand for material consumption and ensure efficiency in material consumption | 1. Prompt detection and repair of water pipe and tank leaks
2. Substation workers to be sensitized on water conservation techniques.
3. Ensure taps are not running when not in use
4. Install water conserving taps that turn-off when water is not being used
5. Install a discharge meter at water outlets to determine and monitor total water usage
6. Harness rainwater and storm-water whenever possible for use in the substation
7. Create water conservation awareness | KETRACO | Continuous | 30,000/year |
| High water demand | 1. Prompt detection and repair of water pipe and tank leaks
2. Substation workers to be sensitized on water conservation techniques.
3. Ensure taps are not running when not in use
4. Install water conserving taps that turn-off when water is not being used
5. Install a discharge meter at water outlets to determine and monitor total water usage
6. Harness rainwater and storm-water whenever possible for use in the substation
7. Create water conservation awareness | KETRACO | One-off | 10,000/year |
| | 1. Prompt detection and repair of water pipe and tank leaks
2. Substation workers to be sensitized on water conservation techniques.
3. Ensure taps are not running when not in use
4. Install water conserving taps that turn-off when water is not being used
5. Install a discharge meter at water outlets to determine and monitor total water usage
6. Harness rainwater and storm-water whenever possible for use in the substation
7. Create water conservation awareness | KETRACO | One-off | 30,000 |
| | 1. Prompt detection and repair of water pipe and tank leaks
2. Substation workers to be sensitized on water conservation techniques.
3. Ensure taps are not running when not in use
4. Install water conserving taps that turn-off when water is not being used
5. Install a discharge meter at water outlets to determine and monitor total water usage
6. Harness rainwater and storm-water whenever possible for use in the substation
7. Create water conservation awareness | KETRACO | One-off | 10,000 |
| | 1. Prompt detection and repair of water pipe and tank leaks
2. Substation workers to be sensitized on water conservation techniques.
3. Ensure taps are not running when not in use
4. Install water conserving taps that turn-off when water is not being used
5. Install a discharge meter at water outlets to determine and monitor total water usage
6. Harness rainwater and storm-water whenever possible for use in the substation
7. Create water conservation awareness | KETRACO | Continuous | 0 |
| | 1. Prompt detection and repair of water pipe and tank leaks
2. Substation workers to be sensitized on water conservation techniques.
3. Ensure taps are not running when not in use
4. Install water conserving taps that turn-off when water is not being used
5. Install a discharge meter at water outlets to determine and monitor total water usage
6. Harness rainwater and storm-water whenever possible for use in the substation
7. Create water conservation awareness | KETRACO | Continuous | 10,000/year |
<table>
<thead>
<tr>
<th>Expected Negative Impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High demand for energy</td>
<td>1. Switch off electrical equipment, appliances and lights when not being used</td>
<td>KETRACO</td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Install occupation sensing lighting at various locations such as storage areas which are not in use all the time</td>
<td></td>
<td>One-off</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>3. Install energy saving fluorescent tubes at all lighting points within the substation instead of bulbs which consume higher electric energy</td>
<td></td>
<td>One-off</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>4. Monitor energy use during the operation of the project and set targets for efficient energy use</td>
<td></td>
<td>Continuous</td>
<td>2,000/month</td>
</tr>
<tr>
<td></td>
<td>5. Sensitise the substation workers to be energy efficient</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>6. Minimize occupational health and safety risks</td>
<td></td>
<td>KETRACO</td>
<td>Continuous</td>
<td>5,000/month</td>
</tr>
<tr>
<td>Impacts on workers’ and community health and safety</td>
<td>Implement all necessary measures to ensure health and safety of the substation workers and the general public during operation of the proposed substation as stipulated in the Occupational Safety and Health Act, 2007</td>
<td>KETRACO</td>
<td>Continuous</td>
<td>5,000/month</td>
</tr>
<tr>
<td>7. Fire outbreaks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>1. Ensure compliance with fire safety regulations and install all necessary fire safety equipment</td>
<td>KETRACO, DOHSS, and Community</td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Conduct regular trainings and fire drills for employees</td>
<td>KETRACO, DOHSS, and Community</td>
<td>Continuous</td>
<td>20,000/year</td>
</tr>
<tr>
<td></td>
<td>3. Periodic maintenance to ensure that, there are: no overloaded electrical systems; no incorrectly installed wiring; no live naked wires; and fuel store areas are continuously monitored</td>
<td>KETRACO, DOHSS, and Community</td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5. Create fire breaks (ploughed strips) on strategic areas of the 100 acre piece of land to prevent fire spreading to other pasture lands or from pasture lands to the substation.</td>
<td>KETRACO, DOHSS, and Community</td>
<td>Continuous</td>
<td>10,000/annum</td>
</tr>
<tr>
<td></td>
<td>6. Build capacity for community on fire related issues including fighting and vigilance</td>
<td>KETRACO, DOHSS, and Community</td>
<td>Continuous</td>
<td>20,000/annum</td>
</tr>
</tbody>
</table>

8. Minimize Electrocution Incidents

<table>
<thead>
<tr>
<th>Electrocution from live power lines or electric equipment</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Put in place a maintenance system to ensure physical integrity of substation equipment is maintained</td>
<td>KETRACO</td>
<td>Planning stage</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Deactivating and properly grounding live wires before repair works are performed</td>
<td>KETRACO</td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td>Expected Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>3. Ensure that live wire works is conducted by trained personnel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Access to the substation should only be by authorization and trained personnel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Erect a perimeter fence to deny unauthorized people access the substation</td>
<td></td>
<td>During construction</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6. Clear warning signs to be placed on strategic places</td>
<td></td>
<td></td>
<td>10,000/year</td>
</tr>
<tr>
<td></td>
<td>7. Personnel should not approach an exposed energized or conductive part unless the personnel is - properly insulated from the energized part with gloves or other approved insulation; the energized part is properly insulated from the personnel and other conductive objects; the personnel is properly isolated and insulated from any other conductive object</td>
<td></td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8. Conduct periodic awareness and sensitization campaigns for the neighbouring communities</td>
<td></td>
<td></td>
<td>10,000/year</td>
</tr>
<tr>
<td></td>
<td>9. Electrostatic and magnetic forces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Perceived danger of Electrostatic and Magnetic force</td>
<td>1. Conduct education and awareness campaigns to dispel fear among community on the effects of electrostatic and magnetic forces</td>
<td>KETRACO</td>
<td>Continuous</td>
<td>20,000 / annum</td>
</tr>
<tr>
<td>10. Increase in social vices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Increase in social vices including HIV/AIDS | 1. Periodic sensitization forums for employees on ethics, morals; general good behaviour and the need for the project to co-exist with the neighbours
2. Guidance and counselling on HIV/AIDS and other STDs to employees
3. Provision of condoms
4. enforcement of KETRACO’s policy on sexual harassment and abuse of office | KETRACO | Continuous | 30,000/year |
Table 7.3: Environmental Management Plan for the decommissioning phase of the proposed 132/33 kV substation

<table>
<thead>
<tr>
<th>Expected Negative Impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
</table>
| 1. Reduction of Noise and vibrations | 1. Install portable barriers to shield compressors and other small stationary equipment where necessary.
2. Demolish mainly during the day. The time that most of the neighbours are out working.
3. Provide appropriate PPE to workers
4. Co-ordinate with relevant agencies and neighbouring communities regarding all substation demolition activities | KETRACO and Contractor | Continuous | To be determined |
| Generation of dust | 1. Watering all active demolition areas as and when necessary to lay dust.
2. Cover all trucks hauling soil, sand and other loose materials or require all trucks to maintain at least two feet of freeboard. | KETRACO and Contractor | Continuous | 0 |
<table>
<thead>
<tr>
<th>Expected Negative Impacts</th>
<th>Recommended Mitigation Measures</th>
<th>Responsible Party</th>
<th>Time Frame</th>
<th>Cost (Ksh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Pave, apply water when necessary, or apply (non-toxic) soil stabilizers on all unpaved access roads, parking areas and staging areas at demolition sites.</td>
<td></td>
<td></td>
<td>One-off</td>
<td>10,000</td>
</tr>
<tr>
<td>4. Provide appropriate PPE to all workers</td>
<td></td>
<td></td>
<td>Continuous</td>
<td>Dust coats and dust masks@3000 per employee</td>
</tr>
<tr>
<td>Generation of exhaust emission</td>
<td>1. Vehicle idling time shall be minimised</td>
<td>KETRACO and Contractor</td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. Regular servicing of engines and machine parts to reduce exhaust emission generation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition waste</td>
<td>2. All machinery, equipment, structures and partitions that will not be used for other purposes must be removed and recycled/reused as far as possible or they be taken to a licensed waste disposal site</td>
<td>KETRACO and Contractor</td>
<td>One-off</td>
<td>0</td>
</tr>
<tr>
<td>Expected Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>8. Dispose waste more responsibly by contracting a registered waste handler who will dispose the waste at designated sites or landfills only and in accordance with the existing laws.</td>
<td>KETRACO and Contractor</td>
<td>Continuous</td>
<td>Cost borne by the contractor</td>
<td></td>
</tr>
<tr>
<td>4. Oil spills</td>
<td>1. Install oil trapping equipment in areas where there is a likelihood of oil spillage e.g. during maintenance of construction facility and vehicles.</td>
<td>KETRACO and Contractor</td>
<td>Continuous</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2. In case of an oil spill, immediate clean up measures will be instituted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Close surveillance of the fuel and cooling oil store</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Impacts on workers’ and community health and safety</td>
<td>1. Ensure strict compliance with the Occupational Safety and Health Act (OSHA) 2007</td>
<td>KETRACO DOHSS and Contractor</td>
<td>Continuous</td>
<td>To be determined</td>
</tr>
<tr>
<td></td>
<td>2. Prohibit access by unauthorized personnel into the demolition site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Place warning signs where necessary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Rehabilitation of project site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Negative Impacts</td>
<td>Recommended Mitigation Measures</td>
<td>Responsible Party</td>
<td>Time Frame</td>
<td>Cost (Ksh)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Vegetation disturbance | 1. Implement an appropriate re-vegetation programme to restore the site to its original status
2. Consider use of indigenous plant species in re-vegetation
3. Trees should be planted at suitable locations so as to interrupt slight lines (screen planting), between the adjacent residential area and the development. | KETRACO and community | One-off | 100,000 |
CHAPTER 8: ENVIRONMENTAL MONITORING PLAN (EMoP)

Table 8.1: Environmental Monitoring Plan for the proposed 132/33 kV substations at Mwingi

<table>
<thead>
<tr>
<th>Monitoring scope</th>
<th>Frequency</th>
<th>Methodology</th>
<th>Responsible entity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construction</td>
<td>Implementation</td>
<td>Decommissioning</td>
</tr>
<tr>
<td>1. Noise and vibration impacts</td>
<td>Daily observation; monthly noise level analysis</td>
<td>Daily observation; monthly noise level analysis</td>
<td>Noise level analysis; quarterly reports on log of vehicle and machine servicing; trees planted; number of (noise) licences given; PPE provided; and sensitization meetings held</td>
</tr>
<tr>
<td>2. Impacts on air pollution</td>
<td>Daily dust observation; monthly air quality analysis</td>
<td>Monthly air quality analysis</td>
<td>Daily dust observation; quarterly air sampling and lab analysis; quarterly reports on PPE provided; log of vehicle and machine servicing; sensitization meetings held; frequency of sprinkling water</td>
</tr>
</tbody>
</table>
Monitoring scope

<table>
<thead>
<tr>
<th>Monitoring scope</th>
<th>Frequency</th>
<th>Methodology</th>
<th>Responsible entity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construction</td>
<td>Implementation</td>
<td>Decommissioning</td>
</tr>
<tr>
<td>3. Solid and liquid waste generation</td>
<td>Monthly</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>4. Oil spills</td>
<td>Daily</td>
<td>Monthly</td>
<td>Daily</td>
</tr>
<tr>
<td>5. Destruction of existing vegetation and habitats</td>
<td>Daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Avifauna mortalities</td>
<td>Quarterly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring scope</td>
<td>Frequency</td>
<td>Methodology</td>
<td>Responsible entity</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Construction</td>
<td>Implementation</td>
<td>Decommissioning</td>
</tr>
<tr>
<td>7. Demand for material consumption</td>
<td>Monthly</td>
<td>Monthly</td>
<td></td>
</tr>
<tr>
<td>8. Health and Safety issues</td>
<td>Daily</td>
<td>Monthly</td>
<td>Daily</td>
</tr>
<tr>
<td>Monitoring scope</td>
<td>Frequency</td>
<td>Methodology</td>
<td>Responsible entity</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>9. Soil erosion</td>
<td>Daily</td>
<td>Reports on storm water management and soil erosion control plans developed; amounts of run-off and roof water harvested; water harvesting and storage facilities installed.</td>
<td>KETRACO and Contractor</td>
</tr>
<tr>
<td>10. Fire outbreaks</td>
<td>Monthly</td>
<td>Monthly Reports on fire risk assessment held; compliance with OSHA 2007; trainings held;</td>
<td>KETRACO and Contractor</td>
</tr>
<tr>
<td>11. Visual and aesthetic impacts</td>
<td>Quarterly</td>
<td>Reports on public consultation held; landscaping programme designed and implemented</td>
<td>KETRACO and Contractor</td>
</tr>
<tr>
<td>12. Electrocution incidences</td>
<td>Quarterly</td>
<td>Reports on maintenance system developed; electrocution accidents occurrence and corrective measures taken; visitors and employees access to the substation log; progress on construction of the perimeter wall; warning signs posted; sensitization workshops held</td>
<td>KETRACO and Contractor</td>
</tr>
<tr>
<td>Monitoring scope</td>
<td>Frequency</td>
<td>Methodology</td>
<td>Responsible entity</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>Construction</td>
<td>Implementation</td>
<td>Decommissioning</td>
</tr>
<tr>
<td>13. Perceived danger of Electrostatic and Magnetic force</td>
<td>Quarterly</td>
<td>Reports on education and awareness campaigns held</td>
<td>KETRACO and Contractor</td>
</tr>
<tr>
<td>14. Increase in social vices</td>
<td>Monthly</td>
<td>Monthly</td>
<td>Reports on sensitization forums held; sessions held on guidance and counselling on HIV/AIDS and other STDs; number of condoms issued</td>
</tr>
<tr>
<td>15. Rehabilitation of project site</td>
<td></td>
<td>Monthly</td>
<td>Reports on re-vegetation programme developed and implemented; number and species of trees planted</td>
</tr>
</tbody>
</table>
CHAPTER 9: RECOMMENDATIONS AND CONCLUSION

9.1 Introduction
An Environmental Management Plan (EMP) outline has been developed to ensure sustainability of the site activities from construction through operation to decommissioning. The plan provides a general outlay of the activities, associated impacts, and mitigation action plans. Implementation timeframes and responsibilities are defined, and where practicable, the cost estimates for recommended measures are also provided.

A monitoring plan has also been developed and highlights some of the environmental performance indicators that should be monitored. Monitoring creates possibilities to call to attention changes and problems in environmental quality. It involves the continuous or periodic review of operational and maintenance activities to determine the effectiveness of recommended mitigation measures. Consequently, trends in environmental degradation or improvement can be established, and previously unforeseen impacts can be identified or pre-empted.

It is strongly recommended that a concerted effort is made by the site management in particular, to implement the Environmental Management and Monitoring Plan provided herein. Following the commissioning of the 132/33 kV transmission substation, statutory Environmental and Safety Audits must be carried out in compliance with the national legal requirements, and the environmental performance of the site operations should be evaluated against the recommended measures and targets laid out in this report.

It is quite evident from this study that the construction and operation of the proposed transmission substation will bring positive effects in the project area including improved supply of electricity, creation of employment opportunities, gains in the local and national economy, provision of market for supply of building materials, Informal sectors benefits, Increase in revenue, Improvement in the quality of life for the workers and community members, and Improved security.

Considering the proposed location, construction, management, mitigation and monitoring plan that will be put in place, the project is considered important, strategic and beneficial and given that no immitigable negative impacts were encountered and that no community objection was received, the project may be allowed to proceed.
9.2 Recommendations
Following the impact analysis presented in the previous sections, the following recommendations were made:

- The proposed project to be implemented in compliance with the relevant legislation and planning requirements
- The proponent to ensure implementation of the mitigation measures provided in the EMP
- The proponent to monitor implementation of the EMP using the developed EMoP
- The proponent to conduct annual Environmental Audits and submit to NEMA
- NEMA to consider, approve and grant an Environmental Impact Assessment License to the proponent

9.3 Conclusion
From the foregoing, it is noted that:

- no immitigable negative impacts were encountered
- No objection from the community was received
- Identified potential negative impacts can be mitigated
- Benefits to the community, region, and the country at large are immense

The ESIA team, therefore, recommends to NEMA to consider, approve and grant an Environmental Impact Assessment License to the proponent and the proponent to implement the project with strict adherence to the proposed EMP.
REFERENCES

Kenya gazette supplement number Environmental Management and Coordination (Emissions Control) Regulations, 2006 Government printer, Nairobi

Kenya gazette supplement Environmental Management and Coordination (Water Quality) Regulations, 2006

Kenya gazette supplement Environmental Management and Coordination (Waste Management) Regulations, 2006

Kenya gazette supplement Environmental Management and Coordination (Excessive Noise and Vibration Control) Regulations, 2009

Kenya gazette supplement, Special Issue 51, Legal Notice number 19; Environmental Management and Coordination (Wetlands, River Banks, Lake Shores and Sea Shore Management) Regulations, 2009 Government printer, Nairobi

Kenya Gazette Supplement Acts Land Planning Act (Cap. 303) Government Printer, Nairobi

Kenya Gazette Supplement Acts Local Authority Act (Cap. 265) Government Printer

Kenya Gazette Supplement Acts Penal Code Act (Cap. 63) Government Printer, Nairobi

Kenya Gazette Supplement Acts Physical Planning Act, 1999 Government printer, Nairobi

Kenya Gazette supplement Acts Public Health Act (Cap. 242) government printer, Nairobi.

The World Bank Safeguard Policies
APPENDICES
Appendix I

ESIA Team EIA/EA Practising Licences/Certificates
THE ENVIRONMENTAL MANAGEMENT AND COORDINATION ACT
CERTIFICATE OF REGISTRATION AS AN ENVIRONMENTAL IMPACT
ASSESSMENT/AUDIT EXPERT

This is to certify Ms. MR. DAVID MATARA MOINDI
P. O. BOX 68611 - 00607, NAIROBI
(Address)
has been registered as an Environmental Impact Assessment Expert in accordance with the provisions
of the Environment Management and Coordination Act and is authorized to practice in the capacity of
Lead Expert/Associate Expert/Firm of Experts (Type) LEAD EXPERT

Dated this 27TH day of APRIL of 2008.

Signature...

(Seal)

Director General
The National Environmental Management Authority
THE ENVIRONMENTAL MANAGEMENT AND COORDINATION ACT
CERTIFICATE OF REGISTRATION AS AN ENVIRONMENTAL IMPACT
ASSESSMENT/AUDIT EXPERT

This is to certify M/s THINGURI THOMAS MWANGI
of .. P.O. BOX 65861 KIAMITI NAIROBI (Address)
has been registered as an Environmental Impact Assessment Expert in accordance with the
provisions of the Environmental Management and Coordination Act and is authorised to practice
in the capacity of a Lead Expert/Associate Expert/Firm of Experts (Type)

LEAD EXPERT

Dated this 22ND Day of APRIL 09

Signature ..

(SEAL)

Director General
The National Environment Management Authority
THE ENVIRONMENTAL MANAGEMENT AND COORDINATION ACT
ENVIRONMENTAL IMPACT ASSESSMENT/AUDIT PRACTICING LICENCE

CALEB MATHEWS OKOTH MANGE
M/S ..(individual or firm) of
P. O. BOX 492-00200
Address ..NAIROBI

I am licensed to practice in the capacity of a (Lead Expert/Associate Expert/Firm of Experts)
LEAD

in accordance with the provisions of the Environmental Management and Coordination Act.

5TH MAY 10
Dated this Day of 20........

Signature ...
(Seal)

Director General
The National Environment Management Authority

Conditions of Licence
This licence expires on 31st December, 20...
THE ENVIRONMENTAL MANAGEMENT AND COORDINATION ACT
CERTIFICATE OF REGISTRATION AS AN ENVIRONMENTAL IMPACT ASSESSMENT/AUDIT EXPERT

MILDRED AKINYI OGENDO
P. O. BOX 28976-00200, NAIROBI
(Address)

Has been registered as an Environmental Impact Assessment Expert in accordance with the provisions of the Environment Management and Coordination Act and is authorized to practice in the capacity of Lead Expert/Associate Expert/Firm of Experts (Type): LEAD EXPERT

Dated this 28TH day of JUNE of 2005

Signature

(Seal)

Director General
The National Environmental Management Authority
Appendix II

Sample of filled community questionnaires
Appendix III

Filled key informants questionnaires
Appendix IV

Public *Baraza* attendance sheets
Appendix V

World Bank and JICA Site Screening Checklists
Appendix VII

Maps showing location of proposed project