

Antwerpsesteenweg 167, B-2800 Mechelen

Tel.: +32(0)15/283 33 Fax: +32(0)15/283 491

www.cgglobal.com

Client: Republic of Kenya – Ministry of Energy

Project Name: Nanyuki - Isiolo - Meru Electrification Project

Contract Number: MOE-P4-2011

Document Title: GEOTECHNICAL REPORT POWERLINE

Project Number:	100008
Document Number:	100008-L0-RE-CW01
Revision:	01

This document contains the following:

No.	Vendor Document number	Vendor Rev.	Description	Pages
1	n/a	n/a	Geotechnical report	486

GEOPHYSICAL & GEOTECHNICAL REPORT NANYUKI –ISIOLO –MERU POWERLINE

This geotechnical report presents our result for geotechnical & geophysical investigations carried out at the proposed Nanyuki –Isiob –Meru powerline.

The field study was carried out in the months of February/March 2013. The weather at the time of the investigation was characterized by dry spell with mild rainfall experienced in some days.

Trial pits were excavated in all the 39 angle points as provided by the client. Our field geologist accompanied the client's survey team during setting out and pegging of the powerline to execute a geological reconnaissance. The data gathered was used to locate the trial pit test location in-between the angle points as well as the geophysical sounding locations.

The purpose of the investigation was to gather subsurface data at the site to facilitate in the design of the substructures and establish other engineering parameters relevant to other auxiliary work. This would determine the most appropriate foundation type, depth and size for the proposed structures. Details of the onsite works, laboratory tests and analysis are given in the following sections of this report.

This report contains both the geophysical results and the soil testing results.

It also has two appendices, one for geophysical data sheets and the other for laboratory test Sheets.

GEOTECHINCAL INVESTIGATION

1. INTRODUCTION

This report presents our result for geotechnical soil investigations carried out at the proposed Nanyuki–Isiolo-Meru powerline. The purpose of the investigation was to gather subsurface data at the site to facilitate in the design of the substructures and establish other engineering parameters relevant to other auxiliary work. This would determine the most appropriate foundation type, depth and size for the proposed structures. Details of the onsite works, laboratory tests and analysis are given in the following sections of this report.

1.1 SCOPE OF WORKS

The extent of the investigation as per our contract required us to carry out the following tasks;

- Geotechnical investigation along the powerline
- Laboratory soil testing and analysis.
- Preparation of Geotechnical report

The work involved the following:

- Excavation of eighty nine Trial pits.
- ✤ Soil Sample Collection of undisturbed U₁₀₀ core cutter and undisturbed bag samples where feasible.
- Logging of all the trial pits including monitoring of the ground water regime whenever encountered.
- Carry out conclusive relevant laboratory test on the recovered samples.
- Preparation of a geotechnical report after analysis of the test results.

All the field work was carried out according to BS 5930 (Code of Practice for site investigations). Whereas laboratory testing was done in accordance to British Standard (BS 1377) and the American Society for Testing Material, (ASTM) designated to 2938 – 39.

2. SITE DESCRIPTION

2.1 Location & Accessibility

The investigated powerline area is approximately 100 km long from Nanyuki town via Isiolo up to Meru. The powerline is within a corridor of approximately 5km of the main tarmac road from Nanyuki to Isiolo to Meru (via Ruiri).

The corridor is considered fairly accessible throughout the powerline especially during dry season.

2.2 Soils

The project area is characterized by shallow red soils in most part of the line. Pockets of black cotton soil are present in a few areas specifically near Nanyuki town, and some section between MN 29 and MN 32. The engineering properties of this black cotton soils together with the other soil types in the project are considered favorable.

3. GENERAL GEOLOGY

The investigated area lies on Pleistocene to Miocene volcanic material overlying the Basement rocks at greater depth. The geology of the project site has been discussed in details at the section on geophysical survey. In general the powerline will be underlain by very stable rock stratum that is present throughout the entire powerline. This stratum was determined to be very near surface in all parts of the line, in some sections around Isiolo substation the bedrock outcrops are visible on the surface.

4. FIELD WORK

A visit was made to the site by our Field geologists and senior laboratory Technologist in the company of the client's representative, whereby 88 trial pits were excavated at selected points along the powerline to depths in the order of maximum 3.0 meters or hard stratum whichever is earlier, using picks and shovels. Soil samples were collected at depth indicated in the attached datasheets. The material encountered mostly comprise of clayey and silty SAND with gravel but with pockets of sandy lean CLAY to sandy SILT to GRAVEL with silt/clay and sand. The exercise followed guidelines outlined in BS 5930: 1999 - The Code of Practice for Site Investigations.

4.1 SAFETY

Standard safety equipment was issued to the staff on site including overalls, safety boots and helmets.

4.2 SAMPLING

Disturbed bulk bag samples were taken from selected trial pits depth where best laboratory sample was recoverable and put in polythene bags then secured by double tying the mouth. A label was inserted between the two string knots. Undisturbed soil sample and insitu density was also undertaken whenever feasible at site. Further excavation was carried out where ground conditions allowed to check for any stratigraphical change. We note that no noticeable stratigraphical changes were observed below the test depth in all the trail pits.

4.3 LABORATORY TESTS

Recovered undisturbed soil samples and the bulk samples were transported to our laboratories and subjected to testing in accordance with the Client's instructions.

The test methods and the results obtained are presented in the following section of this report.

4.4 Classification Tests

The test results indicate presence of silty and clayey SAND. Atterberg's Limit results are consistent with the soil classification as set out in BS 5930: Site Investigations. Results of this test have been attached in Appendix of this report for reference.

4.5 Chemical Analysis

This was undertaken in order to establish the presence of harmful levels chemicals, especially to buried concrete. The testing regime outlined in BS 1377-5: 1990 was adopted with the aim of establishing these properties. These results have been presented in the Appendix.

4.6 Dry Density/Moisture Content Relationship

The soil samples recovered at the test locations were subjected to testing in accordance with procedures described BS 1377-4: 1990. The objective of this test was to establish the maximum dry density, optimum moisture content of the material at the investigation depths.

Sub-samples for testing were obtained by reduction of the bulk samples to representative fractions sufficient for testing. Thereafter, the sub-samples were subjected to compaction in a standard mould using a 2.5 kg hammer, at incremental moisture contents. Results of this test have been presented in the Appendix of this report.

5. CONCLUSION AND RECOMMENDATIONS

Soils encountered during the investigations showed variation in properties. From a review of data presented, it can be seen that the material mostly comprise of clayey and silty SAND with gravel but with pockets of sandy lean CLAY to sandy SILT to GRAVEL with silt/clay and sand.

Laboratory tests carried out in all the samples collected from all the test location indicate that these soils have safe ground bearing values at the test depth ranging from **165kPa to 368kPa**, and Plasticity Indices values in the order of 12% to 25%.

Because of the substantial variance, for design purposes, the specific safe bearing capacity at all angle point has been provided and should be adopted. Similarly specific bearing capacity at selected representative points along the line has also been provided and should be adopted, keeping all excavations free from general water. Note that a safety factor of three has already been factored in.

See *table 1* below showing the safe bearing capacity at all the test locations. *Table 2* below shows the unconfined compressive strength of rocks encountered at the named test locations.

During trial pit excavation, hard strata was encountered very near the surface, dynamic cone penetrometer test carried out at the angle points encountered boulders and packed gravel that inhibited penetration, similarly hard and shovel excavation was Limited by occurrence of hard ground, boulders and gravel as well as bedrock. The ground bearing capacity increases substantially with increase in depth as revealed by the geophysical investigations. We recommend use of machinery to excavate the foundations to the desired depth.

The chemical tests on the soil samples show no harmful concentrations. It is recommended however that the concrete to be used in this project be designed to withstand Moderate Conditions of Exposure; these should include minimum cover to reinforcement being 50mm, maximum free water/cement ratio being 0.5, and minimum cement content of 350kg/m3 for Portland Pozzolana Cement (PPC) and 320kg/m3 for Ordinary Portland Cement (OPC).

Considering the typical layout of structures for such installations, and the soil properties encountered therein, it is our recommendation to have normal foundation levels. Therefore the preferred foundation types for the above structures would be PAD and RAFT.

Angle			Bearing
point	SEGMENT	Trial Pit	Capacity
MN 1			230
MN 2			229
	MN 1-2		
	MN2-3	TP2-3	230
MN 3			337
	MN3-4	TP3-4A	229
		TP3-4B	337
MN 4			229
	MN4-5		
MN 5			314
	MN5-6		
MN 6			316
	MN6-7	TP6-7A	229
		TP6-7B	314
MN7			319
	MN7-8	TP7-8A	318
		TP7-8B	319
MN8	+		233
WINO	MN8-9	TP8-9A	233
	IVIIV0-J	TP8-9B	23.
MN9		11-0-50	214
IVIIN3	MN9-10	TP9-10	214
10	101103-10	199-10	227
MN10	MN10-11	TP10-11	237
N AN 11-1	IVIN10-11	1910-11	
MN11		7044 404	218
	MN11-12	TP11-12A	218
		TP11-12B	
		TP11-12C	242
MN12			280
	MN12-13	TP12-13A	232
		TP12-13B	
MN13			242
	MN13-14		
MN14			232
	MN14-15	TP14-15A	254
		TP14-15B	214
MN15	_		254
	MN15-16		
MN16			214
	MN16-17	TP16-17A	
		TP16-17B	215
MN17			215
	MN17-18	TP17-18A	232
		TP17-18B	236
		TP17-18C	202
		TP17-18D	218
MN18			232
	MN18-19	TP18-19A	368
		TP18-19B	235

Angle			Bearing
point	SEGMENT	Trial Pit	Capacity
MN19			236
	MN19-20	TP19-20	263
MN20			202
	MN20-21	TP20-21	
MN21			218
111121	MN21-22	TP21-22	210
MN22	1011121-22	1721-22	368
IVIINZZ	MAN 22 22	T022.22A	
	MN22-23	TP22-23A	283
		TP22-23B	
MN23			235
	MN23-24	TP23-24A	
		TP23-24B	
MN24			263
	MN24-25	TP24-25	
MN25			283
	MN25-26		
MN26			325
	MN26-27	TP26-27A	
		TP26-27B	
MN27			168
	MN27-28	TP27-28	325
MN28			255
111120	MN28-29	TP28-29	200
MN29	1011020-23	1F20-25	353
WIN25	MN29-30	TP29-30A	333
	1011023-50		
		TP29-30B	
		TP29-30C	
MN30			295
	MN30-31	TP30-31	
MN31			259
	MN31-32	TP31-32A	168
		TP31-32B	
MN32			235
	MN32-33	TP32-33	255
MN33			317
	MN33-34	TP33-34A	
		TP33-34B	
		TP33-34C	353
MN34			362
	MN34-35		
MN35			265
	MN35-36		203
MN26	101103-30		171
MN36	MANDO 07	TD2C 27	171
	MN36-37	TP36-37	295
MN37			185
	MN37-38	TP37-38	259
MN38			218
	MN38-39	TP38-39	151
MN39			236

Table 2: unconfined compressive strength of rocks

UNCONFINED COMPRESSIVE STRENGTH OF ROCK

ASTM D7102

B H NO:	Depth (m)	Height of Specimen (mm)	Area of Specimen (mm)	Mass of Specimen (g)	Density (kg/m ³)	Load at Faiure (kN)	Compressive Strength (N/mm2)	Remarks
MN 12(TP12-13B)MN 13	1.0M	50	2500	287	2296	100.0	40.0	DRY
		50	2500	285	2280	95.0	38.0	
		50	2500	289	2312	105.0	42.0	
		50	2500	294	2352	75.0	30.0	SOAKED
		50	2500	296	2368	85.0	34.0	
		50	2500	293	2344	70.0	28.0	
MN 16(TP16-17A)MN 17	1.0M	50	2500	276	2208	80.0	32.0	DRY
		50	2500	273	2184	70.0	28.0	
		50	2500	275	2200	60.0	24.0	
		50	2500	279	2232	55.0	22.0	SOAKED
		50	2500	280	2240	40.0	16.0	
		50	2500	283	2264	50.0	20.0	

B H NO:	Depth (m)	Height of Specimen (mm)	Area of Specimen (mm)	Mass of Specimen (g)	Density (kg/m ³)	Load at Faiure (kN)	Compressive Strength (N/mm2)	Remarks
MN 20(TP20-21)MN 21	1.0M	50	2500	300	2400	77.5	31.0	DRY
		50	2500	304	2432	75.0	30.0	
		50	2500	306	2448	70.0	28.0	
		50	2500	310	2480	56.3	22.5	SOAKED
		50	2500	309	2472	50.0	20.0	
		50	2500	312	2496	46.3	18.5	
MN 21(TP21-22)MN 22	1.9M	50	2500	309	2472	138.8	55.5	DRY
		50	2500	312	2496	132.5	53.0	
		50	2500	308	2464	125.0	50.0	
		50	2500	314	2512	116.3	46.5	SOAKED
		50	2500	313	2504	107.5	43.0	
		50	2500	316	2528	118.8	47.5	
		50	2500			151.0		
MN 22(TP22-23B)MN 23	1.8M	50	2500	315 317	2520 2536	151.3	60.5 58.0	DRY
		50	2500			145.0		
		50 50	2500	318 320	2544 2560	153.8 126.3	61.5 50.5	SOAKED
		50	2500	320	2580	135.0	54.0	SUARED
		50	2500	319	2552	140.0	56.0	
			2300	515	2332	140.0	50.0	
MN 23(TP23-24A)MN 24	1.2M	50	2500	290	2320	92.5	37.0	DRY
		50	2500	288	2304	86.3	34.5	
		50	2500	291	2328	97.5	39.0	
		50	2500	294	2352	67.5	27.0	SOAKED
		50	2500	297	2376	78.8	31.5	
		50	2500	296	2368	72.5	29.0	+

B H NO:	Depth (m)	Height of Specimen (mm)	Area of Specimen (mm)	Mass of Specimen (g)	Density (kg/m ³)	Load at Faiure (kN)	Compressive Strength (N/mm2)	Remarks
MN 23(TP23-24B)MN 24	1.2M	50	2500	280	2240	90.0	36.0	DRY
WIN 25(11 25-240)WIN 24	1.2.141	50	2500	283	2264	80.0	32.0	DAT
		50	2500	279	2232	87.5	35.0	
		50	2500	286	2288	67.5	27.0	SOAKED
		50	2500	285	2280	65.0	26.0	JUARED
		50	2500	287	2296	57.5	23.0	
MN 24(TP24-25)MN 25	0.3M	50	2500	265	2120	102.5	41.0	DRY
WIN 24(11/24-25)/WIN 25	0.5141	50	2500	260	2080	117.5	47.0	DRI
		50	2500	263	2104	132.5	53.0	
		50	2500	271	2168	93.8	37.5	SOAKED
		50	2500	268	2144	82.5	33.0	
		50	2500	267	2136	95.0	38.0	
						07.5		
MN 26(TP26-27)MN 27	1.0M	50	2500	265	2120	87.5	35.0	DRY
		50	2500	260	2080	80.0	32.0	
		50	2500	263	2104	68.8	27.5	
		50	2500	271	2168	55.0	22.0	SOAKED
		50	2500	268	2144	46.3	18.5	
		50	2500	267	2136	57.5	23.0	
MN 28(TP28-29)MN 29	1.5M	50	2500	318	2544	162.5	65.0	DRY
		50	2500	316	2528	153.8	61.5	
		50	2500	319	2552	145.0	58.0	
		50	2500	320	2560	133.8	53.5	SOAKED
		50	2500	323	2584	140.0	56.0	
		50	2500	321	2568	128.8	51.5	

B H NO:	Depth (m)	Height of Specimen (mm)	Area of Specimen (mm)	Mass of Specimen (g)	Density (kg/m ³)	Load at Faiure (kN)	Compressive Strength (N/mm2)	Remarks
MN 29(TP29-30A)MN 30	0.8M	50	2500	281	2248	107.5	43.0	DRY
WIN 25(1725-50A)WIN 50	0.0141	50	2500	279	2232	98.8	39.5	DINI
		50	2500	282	2256	87.5	35.0	
		50	2500	284	2250	70.0	28.0	SOAKED
		50	2500	283	2264	67.5	27.0	JUNICO
		50	2500	286	2288	75.0	30.0	
MN 29(TP29-30B)MN 30	01.5M	50	2500	273	2184	120.0	48.0	DRY
		50	2500	277	2216	107.5	43.0	
		50	2500	275	2200	90.0	36.0	
		50	2500	281	2248	72.5	29.0	SOAKED
		50	2500	283	2264	83.8	33.5	
		50	2500	279	2232	67.5	27.0	
MN 29(TP29-30C)MN 30	1.2M	50	2500	254	2032	85.0	34.0	DRY
WIN 25(122-50C)WIN 50	1.2111	50	2500	254	2032	97.5	39.0	DKT
		50	2500	250	2048	105.0	42.0	
		50	2500	255	2024	62.5	25.0	SOAKED
		50	2500	260	2080	50.0	20.0	JUARED
		50	2500	259	2072	48.8	19.5	
MN 31(TP30-31)MN 31	1.5M	50	2500	298	2384	145.0	58.0	DRY
		50	2500	297	2376	125.0	50.0	
		50	2500	299	2392	115.0	46.0	
		50	2500	302	2416	81.3	32.5	SOAKED
		50	2500	304	2432	92.5	37.0	
		50	2500	301	2408	75.0	30.0	

B H NO:	Depth (m)	Height of Specimen (mm)	Area of Specimen (mm)	Mass of Specimen (g)	Density (kg/m ³)	Load at Faiure (kN)	Compressive Strength (N/mm2)	Remarks
MN 31(TP31-32B)MN 32	0.8M	50	2500	245	1960	51.3	20.5	DRY
		50	2500	248	1984	65.0	26.0	
		50	2500	251	2008	76.3	30.5	
		50	2500	256	2048	43.8	17.5	SOAKED
		50	2500	260	2080	35.0	14.0	
		50	2500	258	2064	41.3	16.5	
MN 33(TP33-34A)MN 34	1.2M	50	2500	310	2480	158.8	63.5	DRY
		50	2500	314	2512	142.5	57.0	
		50	2500	312	2496	152.5	61.0	
		50	2500	318	2544	132.5	53.0	SOAKED
		50	2500	316	2528	118.8	47.5	
		50	2500	319	2552	125.0	50.0	
MN 22/TD22 240144N 24	1.014	50	2500	207	2456	140.0	505	DRV
MN 33(TP33-34B)MN 34	1.8M	50	2500	307	2456	148.8	59.5	DRY
		50	2500	305	2440	137.5	55.0	
		50	2500	308	2464	142.5	57.0	
		50	2500	311	2488	98.8	39.5	SOAKED
		50	2500	313	2504	102.5	41.0	
		50	2500	312	2496	107.5	43.0	

GEOPHYSICAL INVESTIGATION

Executive Summary

This section describes the results of geophysical site investigations on the proposed Nanyuki - Isiolo - Meru power line in Kenya.

Climate

The area exhibits varying climatic conditions which can be correlated with proximity to Mt. Kenya. Meru receives highest rainfall followed by Nanyuki and least rainfall is at the area near Isiolo substation. The areas on the lee ward side of Mt Kenya are arid to semiarid with vegetation type varying with amount of rainfall received. The wind ward side of the mountain receives substantial rainfall with fertile soils for agricultural farming.

Geology

The geology is variable in the region, with volcanic rocks being predominant. The rocks in the area consist of

(i) *Precambrian Basement System rocks*. And forms the floor upon which all other rocks rest. These rocks consist of schist, granulites and heterogeneous gneisses of varying composition. The basement system of rocks is not exposed in this area.

(ii) Tertiary to Recent Volcanic rocks, these are rocks formed from volcanic activity, erosion and deposition (Rocks of Mount Kenya volcanics and Recent Superficial deposits of soils laterites, ashes, younger moraines, glacial-fluvial deposits.)

The power line traverses through an area with variable geology raging from Tertiary to recent volcanic deposits to Precambrian Basement System. These Basalts are overlain by superficial deposits which are in turn overlain by black cotton soils and red soils depending on the area.

Geophysics

Geophysical measurements were executed at selected points along the line. The vertical electrical measurements were done by employing the Schlumbger array with the survey depth probing to a maximum depth of 50 m bgl

The close proximity of the potentials during investigation in the order of 1.0m enabled delineation of near surface stratigraphy which is highly relevant to the foundation depth

of the pylons. Subsequent increment in potential distance enabled us to delineate stratigraphy up to 50m.

Conclusions

The top most layer has been observed to be thinnest at areas near Isiolo substation (angle point 19 all through to angle point 30. In some parts the bedrock is observed to outcrop above ground surface with other places the rocks are covered by a thin soil layer of less than one foot.

The top soil thickens as you approach Meru substation, similarly in the areas near Nanyuki substation and Kisima plantations the top soils layer is thicker than at Isiolo.

Measured ground Resistivity significantly increases with depth indicating hard rock near surface throughout the line. These high resistance rock strata are persistence throughout the power line. The high resistance strata is observed to be very near surface (above five meters bgl) We therefore conclude that there is a solid base rock near surface consistence with volcanic lava flows in the area.

Ground water table is below 50m below ground level in all test locations except at six test locations namely VES 20, VES 26, VES 28, VES 32, VES 35 and VES 41 where the water table is between 41 and 50 meters below the ground level as determined by electrical sounding. We therefore conclude that there is no risk of ground water table rise that would affect the foundations as proposed in the report.

No structural anomalies were identified throughout the line -sampling interval notwithstanding. We therefore conclude that no major considerations need to be factored-in the design.

TABLE OF CONTENTS

1.	INTRODUCTION	2
	1.1 SCOPE OF WORKS	2
2.	SITE DESCRIPTION	3
	2.1 LOCATION & ACCESSIBILITY	
	2.2 Soils	
3.	GENERAL GEOLOGY	3
4.	FIELD WORK	3
	-	
	4.1 SAFETY	
	4.3 LABORATORY TESTS	
	4.4 CLASSIFICATION TESTS	
	4.5 CHEMICAL ANALYSIS	
	4.6 DRY DENSITY/MOISTURE CONTENT RELATIONSHIP	4
5.	CONCLUSION AND RECOMMENDATIONS	5
1.	INTRODUCTION	1
	1.1 OBJECTIVES OF THE STUDY	1
	BACKGROUND INFORMATION	
	1.2 LOCATION	
	1.3 CLIMATE	
	1.4 Physiography	
	1.5 GENERAL DRAINAGE	2
2.	GEOLOGY	3
	REGIONAL GEOLOGY	
	THE BASEMENT SYSTEM	
	THE MOUNT KENYA SUITE	
	THE MOUNT KENYA VOLCANIC SERIES	
	THE NYAMBENE VOLCANIC SERIES Pleistocene Sediments	
	RECENT	
	GEOLOGY OF THE INVESTIGATED AREA	
	STRUCTURAL GEOLOGY	
3.	HYDROGEOLOGY	7
	REGIONAL HYDROGEOLOGY	8
4.	GEOPHYSICAL INVESTIGATION METHODS	9
	RESISTIVITY METHOD	9
	BASIC PRINCIPLES	
	VERTICAL ELECTRICAL SOUNDINGS (VES)	
	Fieldwork	
	RESISTIVITY COMPUTATIONS RESULTS	
	RESISTIVITY MEASUREMENT RESULTS	
	RESISTIVITY INTERPRETATION RESULTS	13
5.	TOMOGRAPHIC INTERPRETATION	23
	Томодгарну	23
CO	DNCLUSION AND DISCUSSION	27

Conclusion	
RECOMMENDATIONS	

TABLES

TABLE 1: RESISTIVITY INTERPRETATION RESULTS FOR THE PROJECT AREA 13

LIST OF FIGURES

FIGURE 1: TOMOGRAPHIC IMAGE OF VES 1 TO VES 8	
FIGURE 2: TOMOGRAPHIC IMAGE OF VES 9 TO VES 14	
FIGURE 3: TOMOGRAPHIC IMAGE OF VES 15 TO VES 22	
FIGURE 4: TOMOGRAPHIC IMAGE OF VES 23 TO VES 29	
FIGURE 5: TOMOGRAPHIC IMAGE OF VES 30 TO VES 35	
FIGURE 6: TOMOGRAPHIC IMAGE OF VES 36 TO VES 41	
FIGURE 7: INTERPRETED GRAPH FOR VES 1	
FIGURE 8: INTERPRETED GRAPH FOR VES 2	
FIGURE 9: INTERPRETED GRAPH FOR VES 3	
FIGURE 10: INTERPRETED GRAPH FOR VES 4	
FIGURE 11: INTERPRETED GRAPH FOR VES 5	
FIGURE 12: INTERPRETED GRAPH FOR VES 6	
FIGURE 13: INTERPRETED GRAPH FOR VES 7	
FIGURE 14: INTERPRETED GRAPH FOR VES 8	
FIGURE 15: INTERPRETED GRAPH FOR VES 9	
FIGURE 16: INTERPRETED GRAPH FOR VES 10	
FIGURE 17: INTERPRETED GRAPH FOR VES 11	
FIGURE 18: INTERPRETED GRAPH FOR VES 12	
FIGURE 19: INTERPRETED GRAPH FOR VES 13	
FIGURE 20: INTERPRETED GRAPH FOR VES 14	
FIGURE 21: INTERPRETED GRAPH FOR VES 15	
FIGURE 22: INTERPRETED GRAPH FOR VES 16	
FIGURE 23: INTERPRETED GRAPH FOR VES 17	
FIGURE 24: INTERPRETED GRAPH FOR VES 18	
FIGURE 25: INTERPRETED GRAPH FOR VES 19	
FIGURE 26: INTERPRETED GRAPH FOR VES 20	
FIGURE 27: INTERPRETED GRAPH FOR VES 21	
FIGURE 28: INTERPRETED GRAPH FOR VES 22	
FIGURE 29: INTERPRETED GRAPH FOR VES 23	
FIGURE 30: INTERPRETED GRAPH FOR VES 24	
FIGURE 31: INTERPRETED GRAPH FOR VES 25	
FIGURE 32: INTERPRETED GRAPH FOR VES 26	
FIGURE 33: INTERPRETED GRAPH FOR VES 27	
FIGURE 34: INTERPRETED GRAPH FOR VES 28	
FIGURE 35: INTERPRETED GRAPH FOR VES 29	
FIGURE 36: INTERPRETED GRAPH FOR VES 30	
FIGURE 37: INTERPRETED GRAPH FOR VES 31	
FIGURE 38: INTERPRETED GRAPH FOR VES 32	
FIGURE 39: INTERPRETED GRAPH FOR VES 33	
FIGURE 40: INTERPRETED GRAPH FOR VES 34	
FIGURE 41: INTERPRETED GRAPH FOR VES 35	
FIGURE 42: INTERPRETED GRAPH FOR VES 36	
FIGURE 43: INTERPRETED GRAPH FOR VES 37	
FIGURE 44: INTERPRETED GRAPH FOR VES 38	
FIGURE 45: INTERPRETED GRAPH FOR VES 39	
FIGURE 46: INTERPRETED GRAPH FOR VES 40	
FIGURE 47: INTERPRETED GRAPH FOR VES 41	
FIGURE 48: INTERPRETED GRAPH FOR VES 42	
FIGURE 49: INTERPRETED GRAPH FOR VES 43	51

LIST OF ABBREVIATIONS

ABBREVIATIONS: (NOTE: SI spellings used throughout).

EC	Electrical Conductivity (in micro Seimens/centimetre)
Km	Kibmetres
М	Metres
M amsl	metres above mean sea level
m bgl	Metres below ground level
VES	Vertical Electrical Sounding

1. INTRODUCTION

This section describes the results of geophysical site investigations on proposed Nanyuki-Isiolo-Meru power line. The power line starts at Nanyuki substation though Isiolo substation (not constructed) and ends at the existing power substation at Meru. The distance along the line is approximately 100kms. The survey was carried out in the month of February and March 2013. A total of 44 electrical soundings were carried out throughout the line profile to determine the ground parameters necessary for the design of the power line.

1.1 Objectives of the study

The objective of the study was to evaluate the stratigraphy of the subsurface geology through measurements of the electrical resistance/resistivity properties of the underlying materials in order to enable optimal structural design of the towers. The study also investigated the near surface ground water regime along the line to aid the design engineer accordingly.

The investigation comprised a detailed desk study in which the available relevant geological and geophysical data were collected, analyzed, collated and evaluated within the context of the Client's requirements. This was followed by geological and geophysical field investigations, data acquisition, analysis and reporting. The data sources included information gathered from reports of previous geophysical and geological investigations in the area.

BACKGROUND INFORMATION

1.2 Location

The proposed power line is located in laikipia, Isiolo and Meru counties. The area lies between Easting 37.0591333 Northings 0.0002 at VES 1 and Easting 37.6840333, Northings 0.1097833 at Meru. The geology of the area is described in ''The Geology of the Meru - Isiolo Area'' by P. Mason (1953)

1.3 Climate

The area exhibits varying climates which is related with proximity to Mt. Kenya. Meru receives highest rainfall followed by Nanyuki and least rainfall is at the area near Isiolo substation. the areas on the lee ward side of Mt Kenya are arid to semi-arid with vegetation type varying with amount of rainfall received. The areas from angle point one to angle point 29 have similar climatic conditions as compared to the areas from angle point thirty to thirty nine at Meru substation.

1.4 Physiography

The area can be divided into two distinct physiographic units, the North western slopes of Mount Kenya and the Basement System terrain. Mount Kenya has a relatively flat profile and builds gradually up to its present elevation of 5680 m.

The Basement in this area has for the greater part been lowered well below the level of sub-miocene peniplain, now preserved intact only under eastern-most flows of the Mount Kenya series.

1.5 General Drainage

The drainage pattern in this area is determined chiefly by three factors:

- the direction of slope of Mount Kenya volcanic series
- the slope of the end-Tertiary peniplain
- the Basement System structures

2. GEOLOGY

The investigated area lies on Pleistocene to Miocene volcanic material overlying the Basement rocks at greater depth. Below we discuss the regional geology as well as the detailed assessment of the geology at the investigated area

Regional Geology

The rocks of the area fall naturally into two distinct groups, those very ancient constituting the Basement rocks and the rocks that are comparatively recent which include Tertiary and later volcanic plus the subordinate sediments. The geological history of the area can be traced through the following chief phases: -

Deposition of the Basement System Metamorphism of the Basement System Erosion between the Archean and the Tertiary period Sub-Miocene peneplanation and Miocene sedimentation Eruption of Mount Kenya The End-tertiary peneplanation

Middle and Upper Pleistocene erosion and deposition

The investigated areas are located on the northwestern side of Mount Kenya. Before the formation of the Mount Kenya the whole area was made up of Pre-Cambrian Basement System crystalline rocks of the Mozambique Belt. These very old rocks were laid down, metamorphosed, exposed and eroded and were in Pre- Tertiary times an 'ancient' land surface (OLS)

The formation of Mount Kenya was followed by extensive and widespread volcanic and wide spread volcanic activity throughout much of Kenya. In Meru central area this activity covered the Old Land Surfaces, and was characterized by periods of extrusive activity followed by periods of relative calm during which erosion by wind, water and glaciation occurred.

The Mount Kenya Suite in which the area under investigation falls is divided into two parts –the volcanics of the main eruptive episode, and the volcanics of the satellite vents. The former are mainly the volcanics erupted from the main vents that is now blocked, and the latter are volcanics erupted from satellite vents and from fissures of the main crater. The two periods of vulcanicity are separated by the consolidation of syenites and phonolites of the central plug

The Basement System

The Basement System Rocks forms the floor on which other rocks of the area lie. It is composed of heterogeneous gneisses, granulites and schists of varied and complex origin. Metamorphic gneisses and schists of basement System outcrop at the southern, eastern and northern margins of the Mt. Kenya volcanic field, and occur as inliers in the south west part of the Mt. Kenya area. Blocks of metamorphic rocks are common high on Mt. Kenya in trachytic agglomerates west of Ithanguni, and it's clear that Basement System rocks form the foundation of the volcanics in the area. Minor intrusions of dioritic type are widespread but relatively rare.

The Mount Kenya Suite

The Mount Kenya Suite include all the vokanic rocks erupted from Mt. Kenya and from satellite vokanoes on its flanks, excepting only those that appear to belong to separate and petrographically dissimilar vokanic episode, namely the Thiba Basalts and the basaltic pumice cones of the northern slopes.

The Mt. Kenya suite covers an area of approximately 2700 sq. miles. The age of the first volcanics of the suite is not known with any accuracy, but can be estimated in general way from the erosional history of the area to a period in the upper Pliocene. The relatively young Thiba Basalts which overlie the Mt. Kenya suite on the southern flanks of the mountain are much younger than the maturation of the mid Pliocene peneplain, and are probably comparable in age with basalts of the northern slopes found to be overlain by soils.

The Mount Kenya Volcanic Series

The western half of the area is covered by a succession of lava flows, which have erupted from the central and subsidiary vents of Mount Kenya

The succession falls into four main and a fifth subsidiary group according to age and lava type: -

- (5). Basalts of the parasitic craters
- (4). Olivine basalts.
- (3) Finely porphyritic and dense phonolites.
- (2) Kenytes.
- (1) Basalts with phonolites.

The lowermost flows are of olivine basalts which underline the kenytes in the area north of Kituri rest camp, and are themselves underlain by tuffs and agglomerates. They are accompanied by some dense phonolites. (2) Overlying the basalts in the north and resting elsewhere directly on the sub-miocene peneplain are successions of Kenyte flows gradually increasing from a negligible thickness across the southern part. Interbedded in this series are considerable thickness of ash and agglomerate and a few basalt flows of limited extent. (3) The kenytes are followed by eruptions of finely porphyritic or dense phonolites and subordinate ash beds having their maximum development along the central part of the lava area of the total thickness of over 656 m. (4) In the north-eastern part the phonolites are overlain by flows of olivine- basalts. The extent of their distribution could not be determined, as the densely forested area was not traversed during the geological mapping. (5) Within the forest in this part of the area, a group of three small and well preserved craters named Kiruini, representing the latest manifestation of vokanism within the area. The basalts of (4) above are thought to belong to an earlier period.

The Nyambene Volcanic Series

Some miles northeast of the area volcanic accumulations build the Nyambeni Mountain ranges, which cover a big area and rise to many thousands of meters above the great flat expanses of the end-Tertiary peneplain. Extensive sheets of lava spread out on the surrounding plains, a few of which fall within the area. The greatly different stages of erosion seen in these cones perhaps indicate a protected period of eruption. The basaltic sheets have a fairly large extent in the north eastern part of the area, but a few widely separated outliers show that the flows originally stretched over most of the eastern half of the area to a distance of well over thirty miles south of the Nyambeni Range.

The flows consist of finely porphyritic and vesicular olivine basalt, some of which has a markedly columnar structure.

Pleistocene Sediments

Gravels of Pleistocene age on a the small plain on the Northern side of the Thingishu River South-west of Lansa Hill consist chiefly of pebbles of Nyambeni basalt with less frequent Basement System and Kenyte pebbles set in a sandy friable matrix. No good vertical exposures were found to show the thickness of the beds. The remnants of apparently younger, torrential deposits, probably upper Pleistocene in age, occur in places along the basement System streams.

Recent

The soils of the District vary according to the rainfall, the underlying formations and the local drainage conditions. Deep soil and subsoil has developed over greater part of Mount Kenya volcanic and Nyambeni hills on the ash beds, owing to the good rainfall and their easily decomposed nature. The top soil is generally a medium to dark brown loam grading downwards into darker more clayey subsoil.

Geology of the investigated area

In the investigated area the superficial deposits made up of black cotton soil which results from the weathered basalts, volcanic ashes and glacial –fluvial deposit. These are underlain by the Mount Kenya Volcanic series which were laid down by explosive activity around Mount Kenya where there was the main eruptive episode and later fissures eruptions. At greater depth these volcanic rocks are underlain by the basement system rocks.

The Mount Kenya volcanics are considered to be –Pleistocene in age because vulcanicity of Mount Kenya began shortly before maturation of the end-Tertiary (Mid- Pliocene) erosion surface and continued for considerable time after it had begun to be incised by a new erosion cycle.

Structural geology

The structure of the Mount Kenya vokano and its satellites is that of a large vokanic pile with radial outward dips centered on the plug, which forms the present peak of the mountain. Within vokanics of the satellites, however, various altitudes of the beds are found. The trachytic formations which out crop in the head of Hohnel and Teleki valleys, and underlie the kenytes, dip to the south and south east, and suggest that they were erupted from a centre to the west of the peaks. Similarly the Ithanguni vokanics show radial out ward dip about the centre.

3. HYDROGEOLOGY

The hydrogeology of an area is normally intimately dependent upon the nature of the parent rock, structural features, weathering processes, recharge mechanism and the form and frequency of precipitation. When evaluating the groundwater potential of an area, several criteria have to be considered, these are satisfied best by considering the geological formations identified in the area in terms of their hydrogeological properties. This section considers the various hydrogeological parameters such as sub-surface storage and presence of structures that can enhance it.

In general the area is drained by the Ewaso Ng'iro River catchment. A number of boreholes have been drilled in the area and it is believed that the upstream play a major role in the recharge of ground water in the general area. Ground water in volcanic rocks is limited to fractures and erosion levels within the volcanic succession. Lavas are generally not water bearing because of their unfractured and impervious character. The recharge mechanism and replenishment of the confined aquifers that underlie the area of investigation can be described broadly as follows;

There is evidence of direct recharge from the surface to the confined aquifers, particularly to the Laikipian Basalts, as they near the surface and at places are exposed locally. It is possible that the Trachytic tuffs and the Basaltic agglomerates of the Simbara Series are replenished directly through the soil or via the local stream systems which act as a recharge conduit to deeper aquifers.

The Mount Kenya forest belt forms the most important recharge area for the aquifers in the area where rainfall reaches 2200mm/year. Here water percolates directly into the faults and cracks within the Pleistocene rocks of the Mount Kenya Volcanics through the soil or via the local stream system, which act as a recharge conduit to deeper aquifers.

Additional recharge may be expected to the aquifers on the slopes of Mount Kenya area via fractures and faults where some of the ground water from higher parts of this area flow to the east and west through the high concentration of faults and fracture zones running east –west.

Regional Hydrogeology

Lavas usually have considerable, but not indefinite, lateral extensions, lengths of flow being measured in miles or occasionally tens of miles and their breadths in hundreds or thousands of meters. As the OLS deposits interbedded with the lavas presumably run together at the margins and extremities of the lavas, they must form a system of only locally connected stratiform aquifers within the series of volcanic rocks.

Some borehole logs records tuffs interbedded between the lavas and those of others, lava flows that are in a highly weathered condition. Few good aquifers have been recorded within such materials, which process cracks in the former and microscopic interstices in the latter collapse, rendering the rocks impermeable. Most of the boreholes are confined in this area.

4. GEOPHYSICAL INVESTIGATION METHODS

A great variety of geophysical methods are available to assist in the assessment of geological subsurface conditions. In the present survey the geo-electrical method has been used. Investigations of the electrical resistance at the project area included the use of geophysical techniques to probe the sub-surface. The main emphasis of the fieldwork undertaken was to determine the electrical resistance, thicknesses and composition of the sub-surface formations and to identify water-bearing zones. This information was principally obtained in the field using ABEM SAS 4000 Terrameter for resistivity soundings

Resistivity Method

Vertical electrical resistance measurement was carried out to probe the condition of the sub-surface and unveil the stratigraphy of the ground. The VES investigates the resistance and resistivity layering below the site of measurement.

Basic Principles

The electrical properties of rocks in the upper part of the earth's crust are dependent upon the lithology, porosity, degree of pore space saturation and the salinity of the pore water. Saturated rocks have lower resistivity than unsaturated and dry rocks. The higher the porosity of the saturated rock results in lower resistivity and the higher the salinity of the saturating fluids, the lower the resistivity. The presence of clays and conductive minerals also reduces the resistivity of the rock.

The resistivity of earth materials can be studied by measuring the electrical potential distribution produced at the earth's surface by an electric current that is passed through the earth.

The resistance R of a certain material is directly proportional to its length L and cross-sectional area A, expressed as:

$$R = Rs * L/A \qquad (Ohm) \tag{1}$$

where Rs is known as the specific resistivity, characteristic of the material and independent of its shape or size. With Ohm's Law,

$$R = dV/I \qquad (Ohm) \tag{2}$$

where dV is the potential difference across the resistor and I is the electric current through the resistor, the specific resistivity may be determined by:

$$Rs = (A/L) * (dV/I)$$
 (Ohm.m) (3)

Vertical Electrical Soundings (VES)

When carrying out a resistivity sounding, current is led into the ground by means of two electrodes. With two other electrodes, situated near the centre of the array, the potential field generated by the current is measured. From the observations of the current strength and the potential difference, and taking into account the electrode separations, the ground resistivity can be determined.

A total of forty four (44) resistivity soundings were carried out with the separation between the electrodes being step-wise increased (in what is known as a Schlumbger Array), thus causing the flow of current to penetrate greater depths. When plotting the observed resistivity values against depth on double logarithmic paper, a resistivity graph is formed, which depicts the variation of resistivity with depth.

The graphs can be interpreted with the aid of a computer program and the actual resistivity layering of the subsoil is obtained. The depths and resistivity values provide the geophysicist with information on the geological layering and thus the depth to the bedrock.

GEOPHYSICAL FIELDWORK AND RESULTS

Fieldwork

Fieldwork was carried out on February and March 2013. Resistivity measurements were used to estimate the depth and thickness to the different sedimentary rock formations. A total of forty four (44) Vertical Electrical Sounding measurements were executed at selected points along the line.

Resistivity Computations Results

The resistivities of the measured depths were computed in order to present the resistivity (Ohm-m) for the vertical profile. The calculation used constants calculated from the formula:

 $K = \pi ((AB/2)2 - (MN/2)2)$

MN

Where: K is a geometric constant

AB is the current electrode separation, and

MN is the potential electrode separation

The table presents the computed resistivity values for the investigated site

Resistivity Measurement Results

The table below presents the measured resistivities (Ohm-m) with their respective depths (m). The data acquired from the survey has been studied to determine whether any particular depth intervals displayed high resistivities values, which would indicate presence of unsaturated material, bedrock. Such variations are caused primarily by differences in the characteristics of the subsurface strata. Resistivities decreases as porosity, hydraulic conductivity, water conductivity and water salinity increase. Dry formations are poor electrical conductors and show very high resistivities. Dry sand and gravel have higher resistivity values. The resistivity values are also affected by electrode spacing, whereby short

spaced electrodes read a smaller part of the formation, which makes possible more precise identification of formation interfaces. As the electrode spacing is not constant, a truer measurement of formation resistivity is obtained since greater penetration of the formation is achieved.

The values represent resistivity for the vertical section of the formations. The depths defined from these results were progressively increased to determine the variation in resistivity with depth. The changes in resistivity/resistance with increased electrode spacing signify change in formation with increase in depth.

The table below presents the resistivity measurements for 44 vertical electrical soundings executed in the proposed power line to a depth of 50 m bgl.

Resistivity Interpretation Results

Interpreted results of the soundings are shown in the following table:

VES No.	Depth (m)	Resistivit y (Ohm- m)	Geological Interpretation
VES 1	0-0.8	719	Top superficial layer comprising of dry clay soils
	0.8 -8	21.4	Compact brown lateritic material
	8-15	65.6	Slightly weathered Basalts
VES 2	0 - 2	222	Dry black clays soils
	2 - 6.3	46.7	Slightly weathered to compact reddish laterites
	16.3-50	77.6	Fresh and compact Basalts

 Table 1: Resistivity Interpretation Results for the Project Area

VES 3 0 - 2	7.06	Top superficial layer comprising of wet black clay soils	
	2 - 5.0	8.63	Weathered brown lateritic material
	5- 50	7.56	Slightly weathered to compact Basalts
VES 4 0 – 2 27	27	Top superficial layer comprising of wet black clay soils	
	2 - 7 2	25	Weathered brown lateritic material
	7 – 15	32	Slightly weathered to compact Basalts
VES 5 0 - 0.8 17 0.8 - 6 32	17	Top superficial layer comprising of black clay soils	
	32	Slightly weathered to compact brown lateritic material	
	6 - 50	40	Compact Basalts
VES 6 0 - 1 26 1 - 3 15 3 - 50 35	26	Top superficial layer comprising of black clay soils	
	15	Weathered brown lateritic material	
	35	Slightly weathered to compact Basalts	
VES 7	0 – 1	27	Top superficial layer comprising of black clay

			soils
	1 – 5	68	Slightly weathered Basalts material
	5 – 50	70	Slightly weathered to compact Basalts
VES 8 0 – 0.5	0 – 0.5	127	Top superficial layer comprising of black clay soils
	0.5 – 2	20	Highly weathered Basalts material
	2 - 50	40	Slightly weathered to compact Basalts
VES 9	0 - 0.8	0.8	Top superficial layer comprising of black clay
			soils
	0.8 -7	47	Compact Basalts material
	7 – 50	35	Slightly weathered to compact Basalt
VES 10	0 - 0.7	78	Top superficial layer comprising of Brown soils
	0.7 - 8	15	Highly weathered Basalts material
	8 - 15	50	Compact Basalts
VES 11	0 - 1.2	33	Top superficial layer comprising of Brown soils
	1.2 – 13	114	Slightly compact Basalts material
	13 – 50	35	Compact Basalts

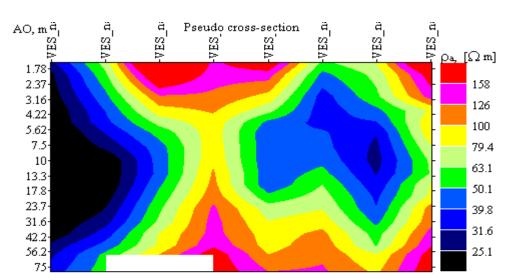
VES 12	0 - 0.7	8	Top superficial layer comprising of Brown soils
	0.7 – 12	45	Slightly weathered Basalts material
	12 - 50	30	Compact Basalts
VES 13	0 - 1.6	18	Top superficial layer comprising of Brown soils
	1.6 - 8	9	Highly weathered Basalts material
	8 - 50	30	Compact Basalts
VES 14	0 - 0.4	16	Top superficial layer comprising of Red soils
	0.4 – 16	75	Weathered Laterite material
	>16	51.6	Compact Basalts
VES 15	0 - 0.3	8	Top superficial layer comprising of Red soils
	0.3 -8	90	Weathered Laterite material
	> 8	75.71	Compact Basalts
VES 16	0 - 0.3	474	Top superficial layer comprising of Reddish
			brown soils
	0.3 -8	55.9	Highly weathered Laterite material

	> 8	75.71	Compact Basalts
VES 17	0 - 0.4	3375	Top superficial layer comprising of Red soils
	0.4 -8	55.9	Highly weathered Laterite material
	> 8	175.71	Compact Basalts
VES 18	0 - 0.7	275	Top superficial layer comprising of Red soils
	0.7 -4	55.9	Highly weathered Laterite material
	> 4	175.71	Compact Basalts
VES 19	0 - 0.8	615	Top superficial layer comprising of Red soils
	0.8 - 8	49.7	Highly weathered Laterite material
	> 8	167	Compact Basalts
VES 20	0 - 0.4	343	Top superficial layer comprising of Red soils
	0.4 - 4	31.98	Highly weathered Laterite material
	> 4	155	Compact Basalts
VEC 21	0 1 1 4	00	
VES 21	0 - 1.14	98	Top superficial layer comprising of Red soils
	1.14 – 9.86	9.86	Highly weathered Laterite material
	> 9.86	155	Compact Basalts

0 – 0.38	2617	Top superficial layer comprising of Red soils
0.38 -	134	Highly weathered Laterite material
7.513		
> 7.513	359	Compact Basalts
0 – 0.9	32	Top superficial layer comprising of Red soils
0.9 - 7.6	7.8	Highly weathered Laterite material
> 7.6	8875	Compact Basalts
0 – 3.57	159	Top superficial layer comprising of Reddish brown soils
3.57 –	34.1	Highly weathered Laterite material
8.27		
> 8.27	311	Compact Basalts
0 - 0.53	24.6	Top superficial layer comprising of Brown soils
0.53 -	56.8	Highly weathered Laterite material
9.72		
>9.72	8875	Compact Basalts
0 - 0 4	766	Top superficial layer comprising of Brown
	7.513 > 7.513 > 7.513 $0 - 0.9$ $0 - 0.9$ $0.9 - 7.6$ > 7.6 $0 - 3.57$ 8.27 8.27 > 8.27 $0 - 0.53$ $0.53 - 9.72$	7.513 359 > 7.513 359 $0 - 0.9$ 32 $0 - 0.9$ 7.8 $0.9 - 7.6$ 7.8 $0 - 3.57$ 8875 $0 - 3.57$ 159 3.57 $ 3.57$ $ 8.27$ 34.1 8.27 311 $0 - 0.53$ 24.6 0.53 $ 9.72$ 8875

			soils
	0.4 - 6.68	56.8	Highly weathered Basalts material
	>6.68	1240	Compact Basalts
VES 27	0 - 0.6	20.1	Top superficial layer comprising of Brown soils
	0.6 - 4.73	6.89	Highly weathered Basalts material
	>4.73	1599	Compact Basalts
1000	0.000	054	
VES 28	0 – 0.96	354	Top superficial layer comprising of Brown soils
	0.9 - 9.31	3503	Highly weathered Basalts material
	>9.31	1599	Compact Basalts
VES 29	0 - 0.5	252	Top superficial layer comprising of Red soils
	0.5 - 8.14	4.17	Highly weathered Basalts material
	>8.14	45.8	Slightly Compact Basalts
VES 30	0 - 2.08	92.7	Top superficial layer comprising of Red soils
	2.08 – 4.9	3.6	Highly weathered Basalts material
	>4.9	97.2	Slightly Compact Basalts

VES 31	0 - 0.86	650	Top superficial layer comprising of Red soils
	086 - 2.9	252	Highly weathered Basalts material
	>2.9	996	Slightly Compact Basalts
VES 32	0 - 0.7	104	Top superficial layer comprising of Red soils
	07 – 14	11	Highly weathered Basalts material
	>14	215	Slightly Compact Basalts
VES 33	0 - 1.39	104	Top superficial layer comprising of Red soils
12000			
	1.39 – 32	92	Weathered Basalts material
	>32	453	Slightly Compact Basalts
VES 34	0 - 4	10.7	Top superficial layer comprising of Black cotton soils
	4 - 17	175	Weathered Basalts material
	>17	324	Slightly Compact Basalts
VES 35	0 - 0.4	403	Top superficial layer comprising of Red soils
	0.4 - 20	19.86	Weathered Basalts material
	>20	247	Slightly Compact Basalts
VES 36	0 - 0.3	548	Top superficial layer comprising of Red soils


	0.3 - 3	42.8	Weathered Basalts material
	>3	335	Slightly Compact Basalts
VES 37	0 - 2.18	317	Top superficial layer comprising of Red soils
	2.18 – 15.4	17.3	Weathered Basalts material
	>15.4	3721	Slightly Compact Basalts
VES 38	0 - 1.11	339	Top superficial layer comprising of Red soils
	1.11 – 11	175	Slightly Weathered Basalts material
	>11	939	Slightly Compact Basalts
VES 39	0 - 0.7	970	Top superficial layer comprising of Red soils
	0.7 – 4.9	89	Slightly Weathered Basalts material
	>4.9	7296	Slightly Compact Basalts
VES 40	0 - 0.96	88.6	Top superficial layer comprising of Brown
		00.0	soils
	0.96 – 4.9	26.7	Slightly Weathered Basalts material
	>4.9	117	Slightly Compact Basalts
VES 41	0 – 1.6	65	Top superficial layer comprising of Brown

			soils
	1.6 - 2.85	1187	Fresh Basalts material
	>2.85	117	Slightly Compact Basalts
VES 42	0 – 0.6	149	Top superficial layer comprising of Red soils
	0.6 – 19	22.8	Slightly Weathered Basalts material
	>19	117	Slightly Compact Basalts
VES 43	0 – 0.96	354	Top superficial layer comprising of Brown soils
	0.9 - 9.31	3503	Highly weathered Basalts material
	>9.31	1599	Compact Basalts
VES 44	0 - 0.34	256	Top superficial layer comprising of Red soils
	0.34 – 12	11	Highly Weathered Basalts material
	>12	2658	Slightly Compact Basalts

5. TOMOGRAPHIC INTERPRETATION

Tomography

The tomographic image of VES 1 to VES 8 shows that the top superficial layer extends to about 2 m bgl. There is a dome-shaped geological formation, which is an indication of a volcanic dike as from VES 4 to VES 7. The resistivities in this area range are consistent with Basaltic and phonolites resistivity. The ground is thus fairly stable.

<u>VES 1 - 2</u>

Figure 1: Tomographic Image of VES 1 to VES 8

The tomographic image of VES 9 to VES 14 is a little bit consistent with homogeneity of the area being high as compared to Fig 1 The top superficial layer extends below 1.9 m bgl followed by a compact layer which extends up to around 8 m bgl, this is underlain by fresh basalt which is well visible below VES 12 but VES 13 is weathered below 3 m bgl.

<u>VES 9 -14</u>

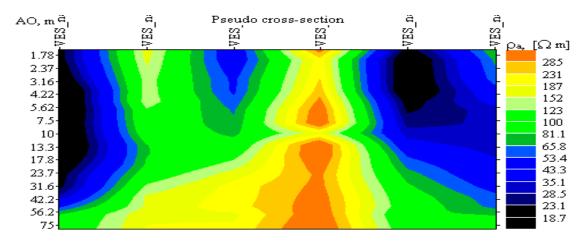
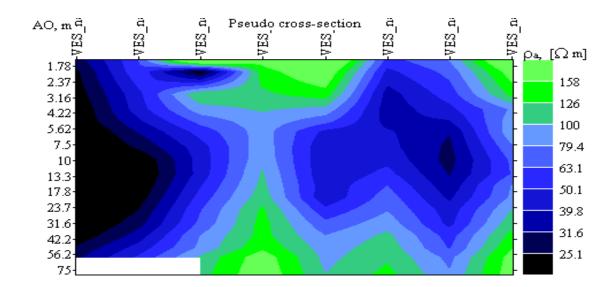



Figure 2: Tomographic Image of VES 9 to VES 14

VES 15 -22

The tomographic image of VES 15 to VES 22 shows that the top superficial layer extends to about 2 m bgl. There is a dome-shaped geological formation, which is an indication of a weak zone below VES 21 and VES 22. The resistivities in this area range are consistent with Basaltic and phonolites resistivity. The ground is thus fairly stable.

Figure 3: Tomographic Image of VES 15 to VES 22

Tomographic Image of VES 23 to VES 29 indicates a top superficial layer up to 1.78 m bgl except for VES 27 which extends below 3 m bgl. This is underlain by a compact layer of basalt which extends to 50 m bgl with resistivity increasing downwards.

Hydrogeologically VES 27 has the greatest hydrological potential while VES 28 has the hardest formation with resistivity range of 400 to 550 OhmM

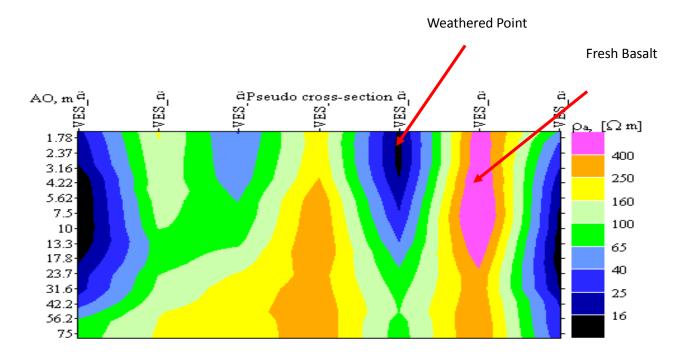


Figure 4: Tomographic Image of VES 23 to VES 29

VES 30 -35

Tomographic Image of VES 30 to VES 35 shows that there is a homogeneous geological formation comprising volcanic sediments with a resistivity range as from 300-500 OhmM except for VES 34 which is weathered up to about 4 m bgl. There is also a dyke below VES 31 with a resistivity of 700 OhmM.

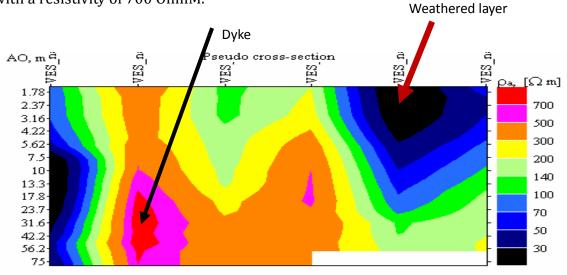


Figure 5: Tomographic Image of VES 30 to VES 35

<u>VES 36 -41</u>

Tomographic image of VES 36 to VES 41 shows the existence of a weathered layer below VES 37 at about 13 m bgl followed by a large dyke from VES 38 to VES 39 at about 8 m bgl to 40 m bgl which marks the beginning of another weathering at 13 m bgl below VES 40. Weathered Layer

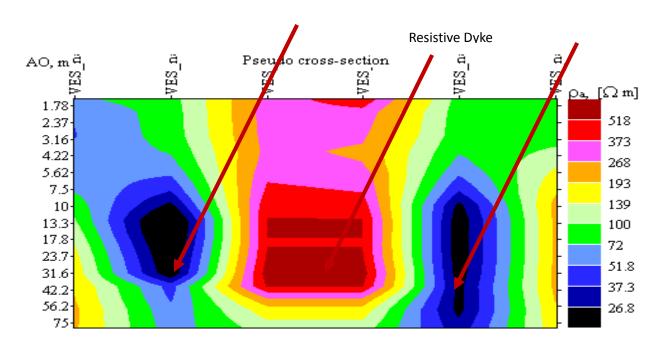


Figure 6: Tomographic Image of VES 36 to VES 41

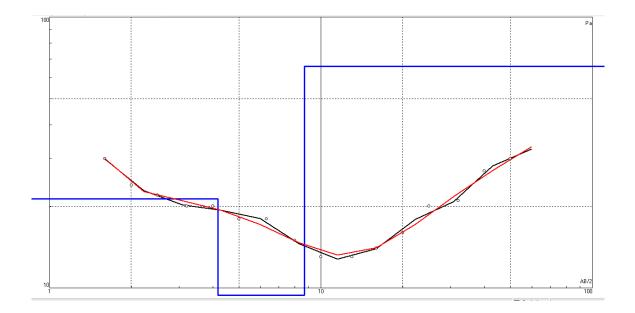
CONCLUSION AND DISCUSSION

Conclusion

The following conclusions are made:-

- (i) The resistivity variations in the area are related to the geology of the subsurface, revealing the stratigraphic layering of the underlying formations.
- (ii) The top most layer of the whole area of survey is composed of unconsolidated material which should be excavated to a depth of between 0.5 to 2 m bgl or as determined by laboratory test results and calculated bearing capacity values. This top layer extends deeper up to about 4 m bgl in areas around VES 13, VES 27 and VES 34 as determined by a 2 D tomographic analysis of the data which involves combination of at least four VESs to get the interconnection of the resistivity between them. This approach provides a clearer picture of the weathering profile as opposed to 1D analysis or resistivity values at single points independently.
- (iii) The decline in the resistivity values with depth is coincidental with weathering profile of the top most formation. (The resistivity values decrease with depth due to the weathering of the formation underlying the top superficial layer which gets into contact with the percolating water from the surface).
- (iv) The clay layer goes to a depth range of 1.0 to 3 m bgl in areas near Nanyuki Town and also the same thickness through Kisima where the Red/black cotton soil is about 3 m bgl. In areas around Meru Isiolo Junction, you find Basalts rock outcrops with some sections having shallow brown soil of about <0.5 to 1 m bgl. This is underlain by dry weathered Basalts materials which are further underlain by fresh Basalts.
- (v) Towards Isiolo and the Sub-station, the clay is less thick to depth of about <1.0 m bgl and then underlain by weathered Basalts.
- (vi) Generally, in the entire surveyed area the geophysics is favorable for the proposed powerline. The geology and stratigraphy is favorable too and there is minimal likelihood or danger of settlements.

Recommendations


Recommendations have been made in the section of laboratory soil testing in this report

From the resistivity measurements it is clear that at the proposed power line from Nanyuki Sub-station runs through a uniform ground and the decrease in the resistivity values is coincidental with the weathering profile.

At sections around VES 13, VES 27 and VES 34 as discussed above, slight changes in the weathering profile should be expected.

Generally, in the whole surveyed area there is no evidence of saturated ground due to presence of groundwater to depths of about 40 m bgl and therefore there is no any adverse effect or possibilities of frozen ground that may interfere with the intended development.

APPENDICES APPENDIX1: GEOTECHNICAL INVESTIGATION APPENDIX2: GEOPHYSICAL INVESTIGATION

Appendix 1: Interpretation VES Graphs

Figure 7: Interpreted Graph for VES 1

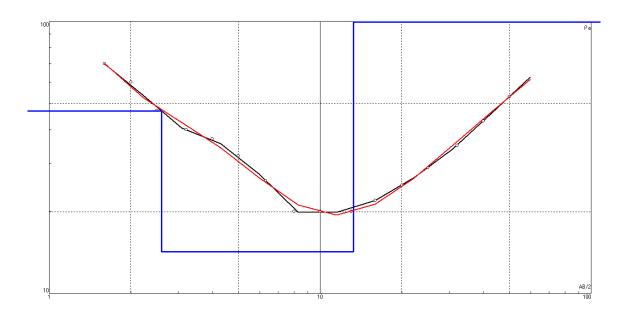


Figure 8: Interpreted Graph for VES 2

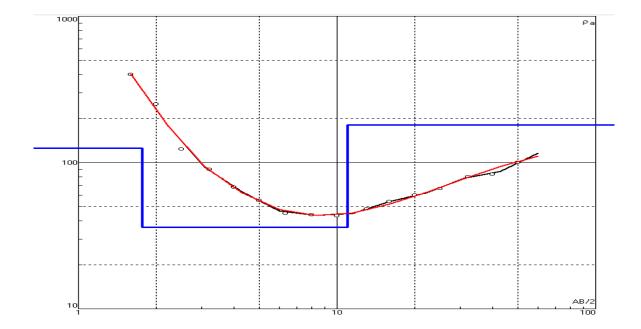


Figure 9: Interpreted Graph for VES 3

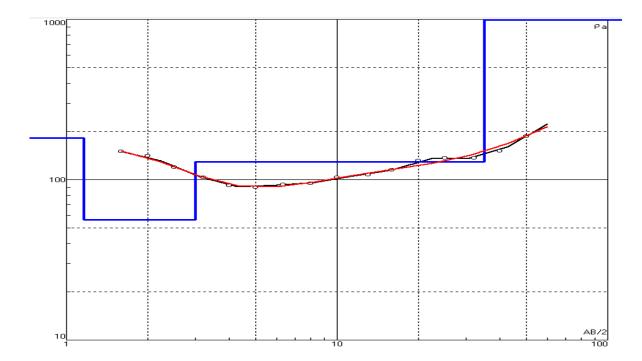


Figure 10: Interpreted Graph for VES 4

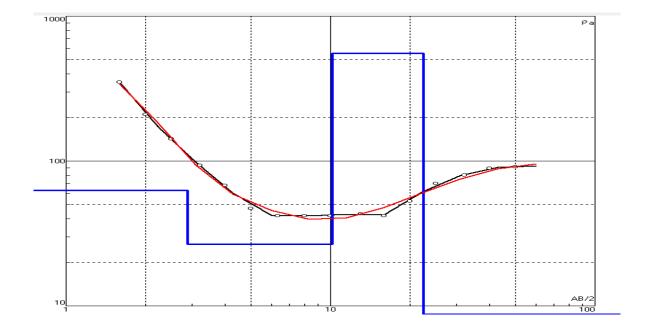


Figure 11: Interpreted Graph for VES 5

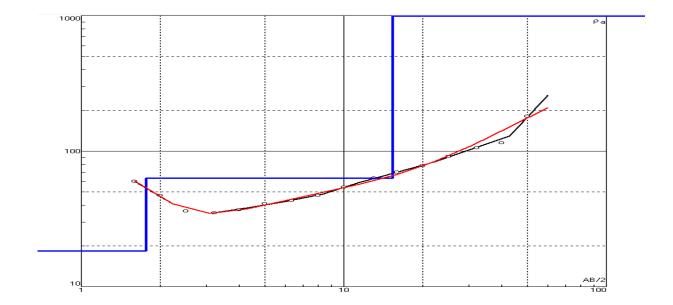


Figure 12: Interpreted Graph for VES 6

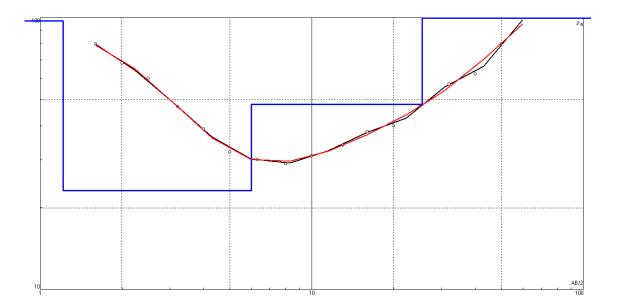
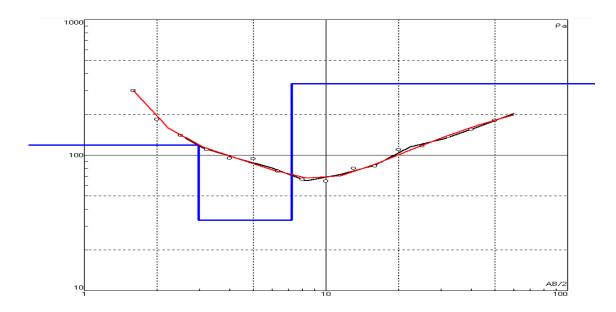



Figure 13: Interpreted Graph for VES 7

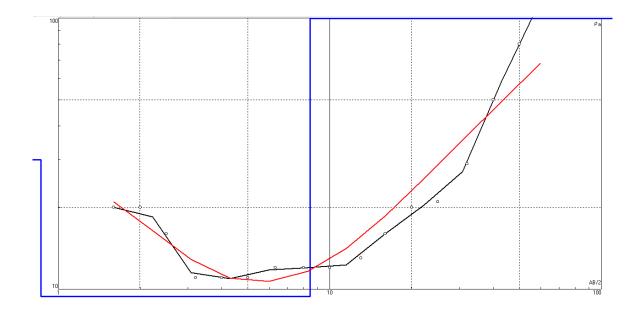


Figure 15: Interpreted Graph for VES 9

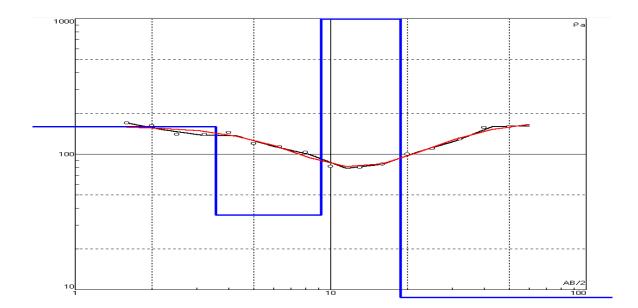


Figure 16: Interpreted Graph for VES 10

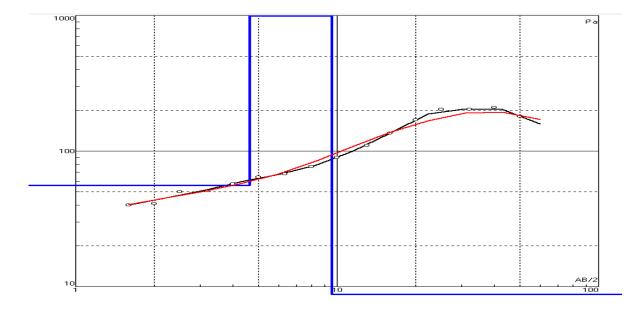


Figure 17: Interpreted Graph for VES 11

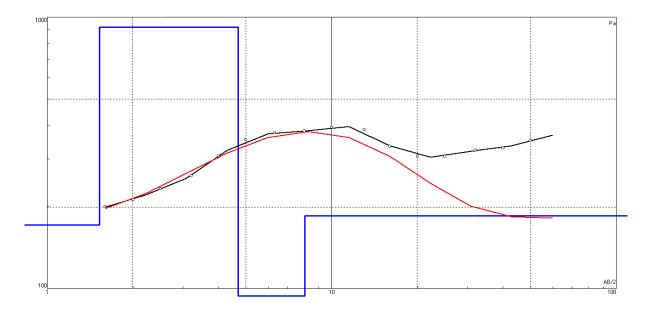


Figure 18: Interpreted Graph for VES 12

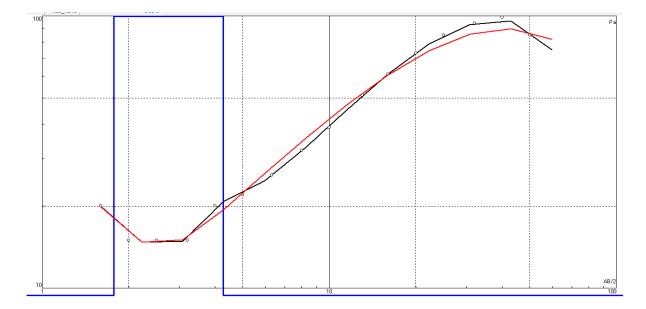


Figure 19: Interpreted Graph for VES 13

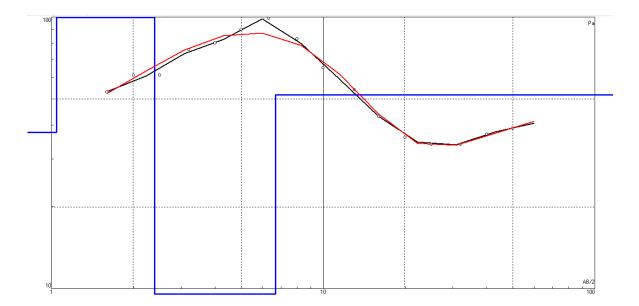


Figure 20: Interpreted Graph for VES 14

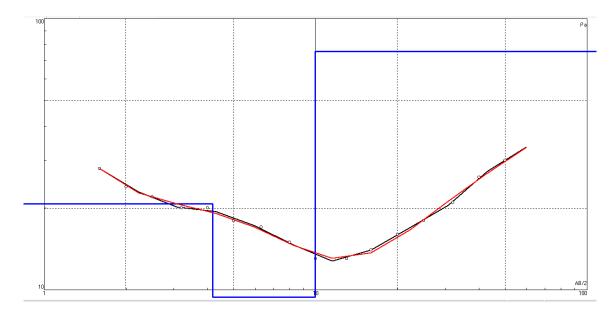


Figure 21: Interpreted Graph for VES 15

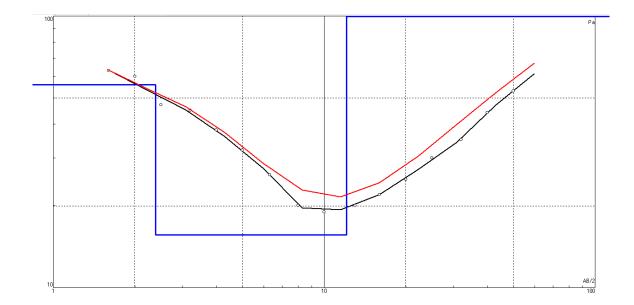


Figure 22: Interpreted Graph for VES 16

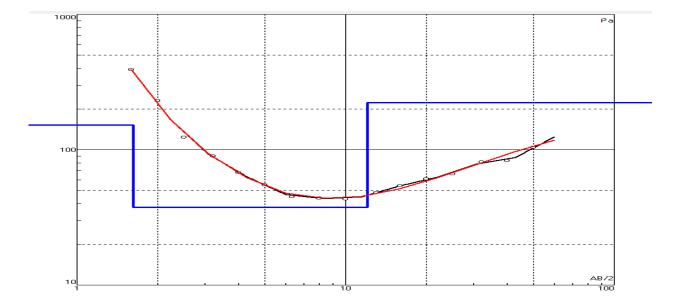


Figure 23: Interpreted Graph for VES 17

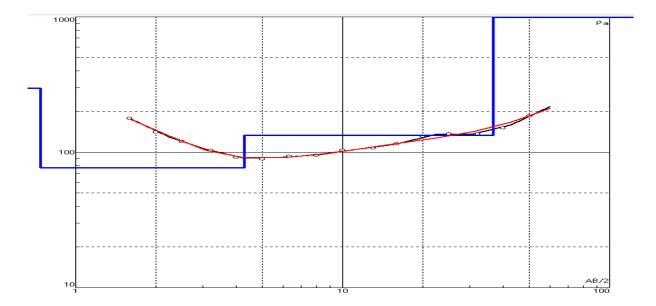


Figure 24: Interpreted Graph for VES 18

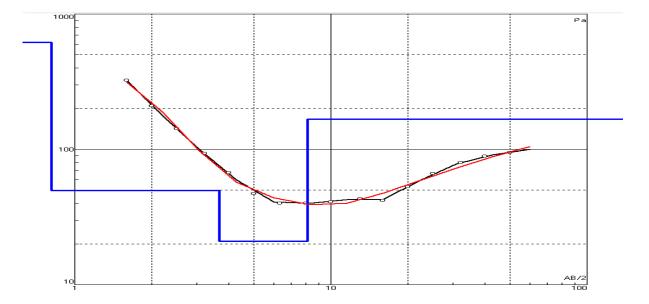


Figure 25: Interpreted Graph for VES 19

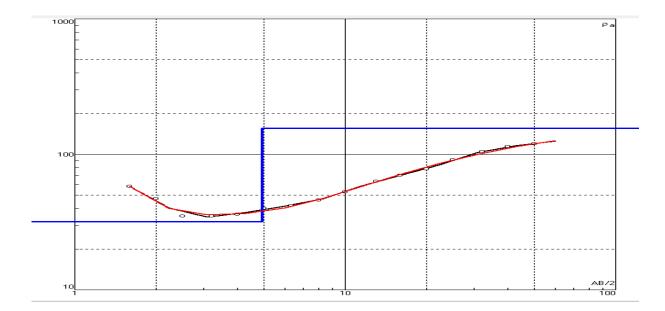


Figure 26: Interpreted Graph for VES 20

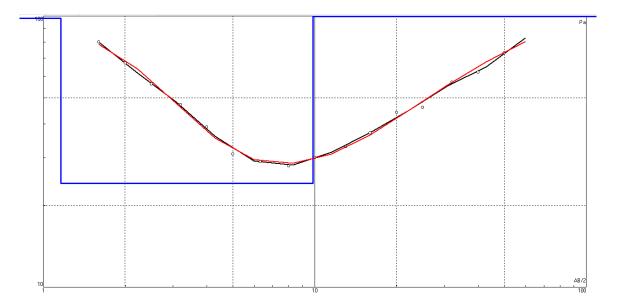


Figure 27: Interpreted Graph for VES 21

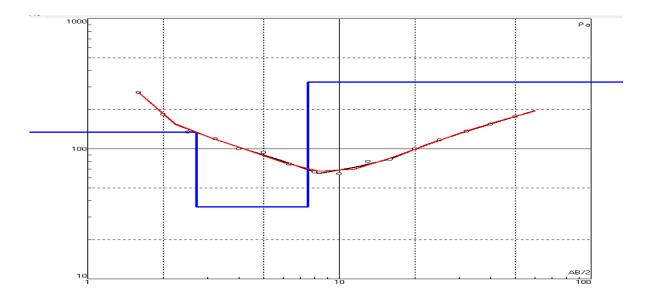


Figure 28: Interpreted Graph for VES 22

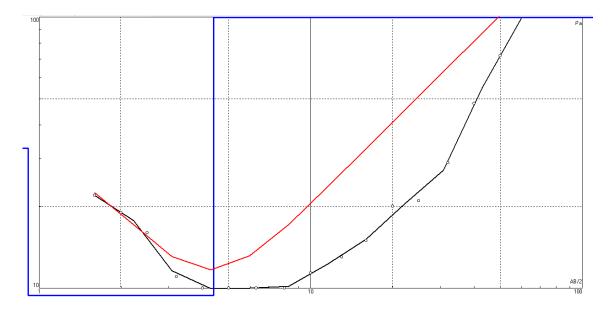


Figure 29: Interpreted Graph for VES 23

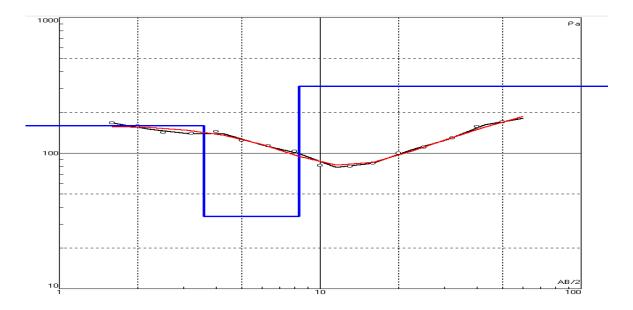


Figure 30: Interpreted Graph for VES 24

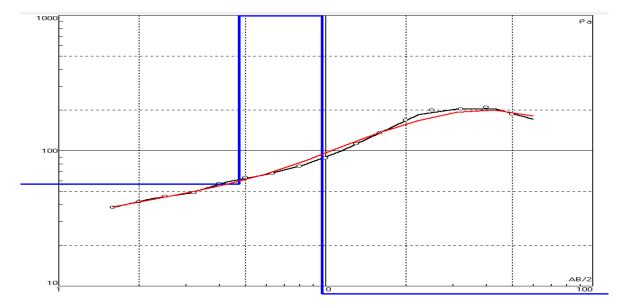


Figure 31: Interpreted Graph for VES 25

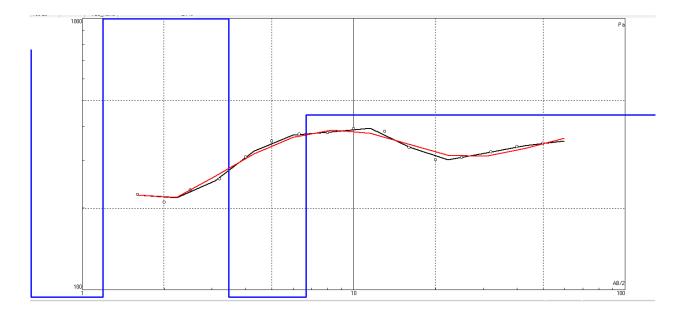


Figure 32: Interpreted Graph for VES 26

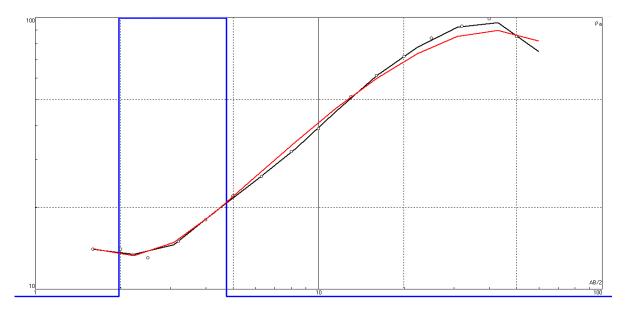


Figure 33: Interpreted Graph for VES 27

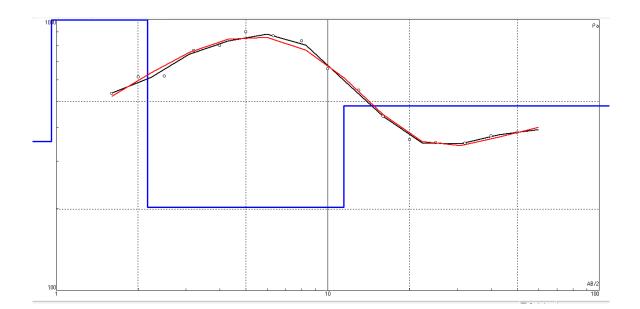


Figure 34: Interpreted Graph for VES 28

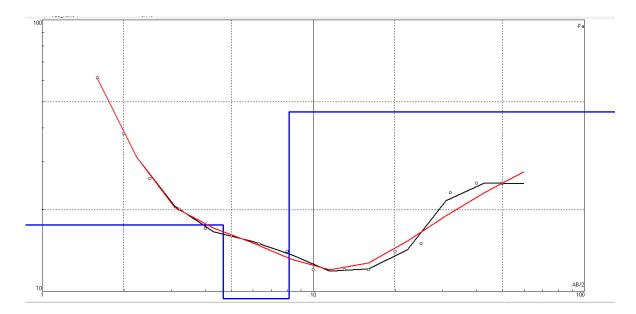


Figure 35: Interpreted Graph for VES 29

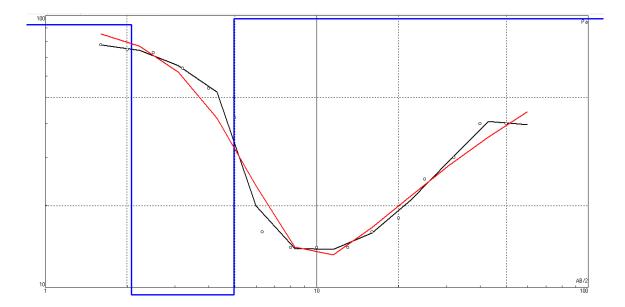


Figure 36: Interpreted Graph for VES 30

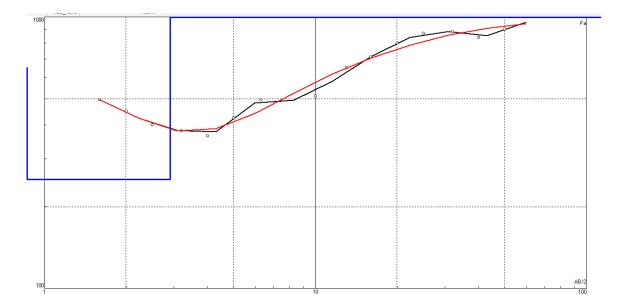


Figure 37: Interpreted Graph for VES 31

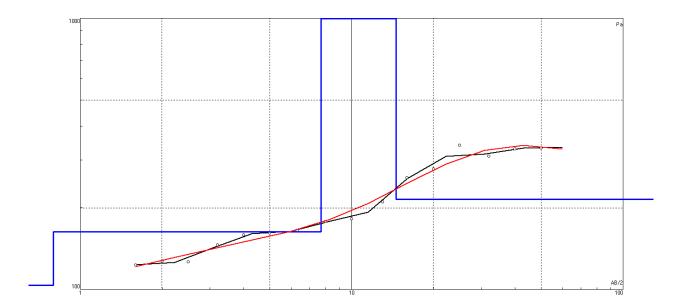


Figure 38: Interpreted Graph for VES 32

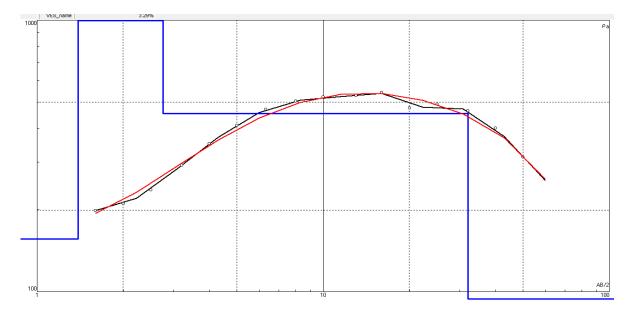


Figure 39: Interpreted Graph for VES 33

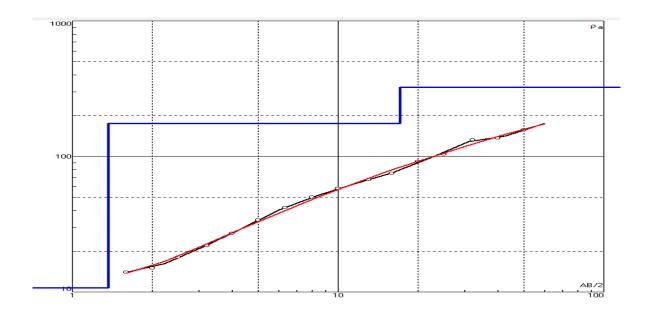


Figure 40: Interpreted Graph for VES 34

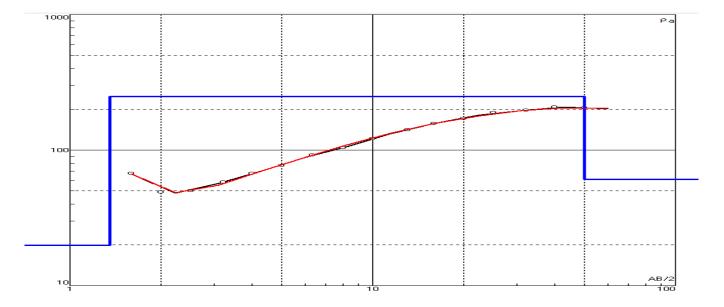


Figure 41: Interpreted Graph for VES 35

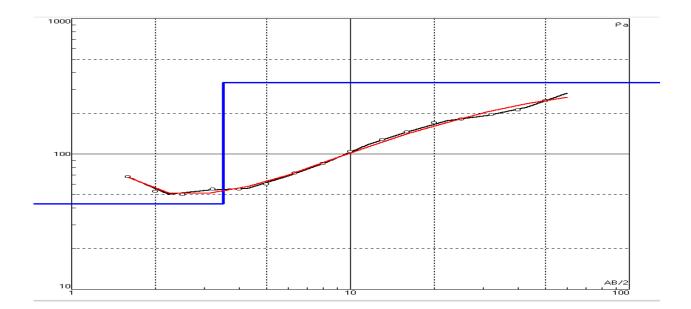


Figure 42: Interpreted Graph for VES 36

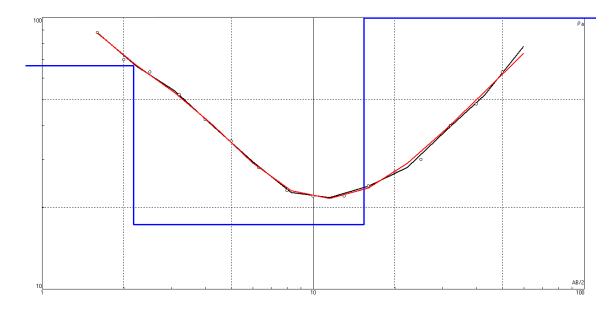


Figure 43: Interpreted Graph for VES 37

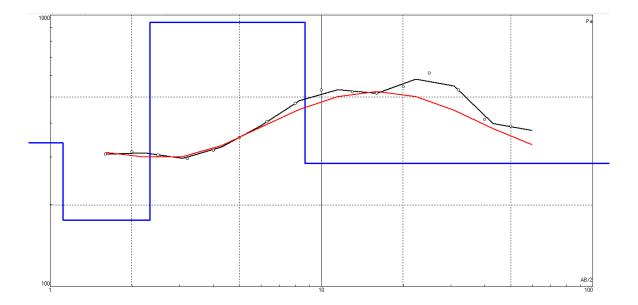


Figure 44: Interpreted Graph for VES 38

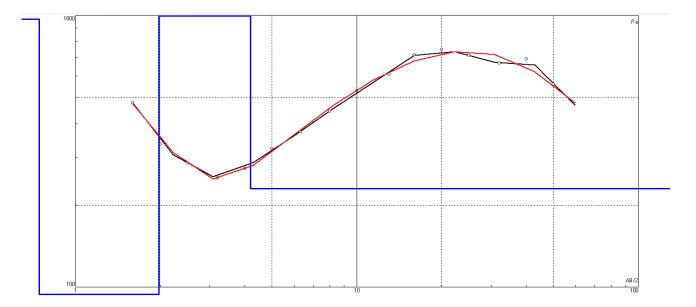
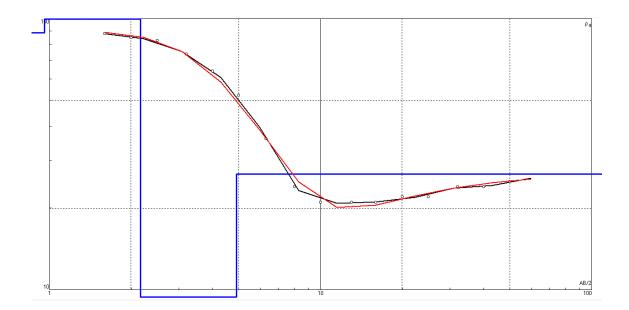



Figure 45: Interpreted Graph for VES 39

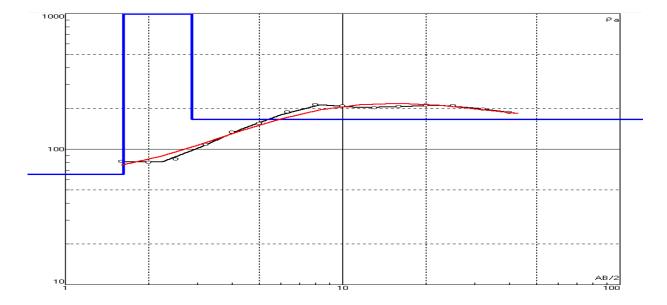


Figure 47: Interpreted Graph for VES 41

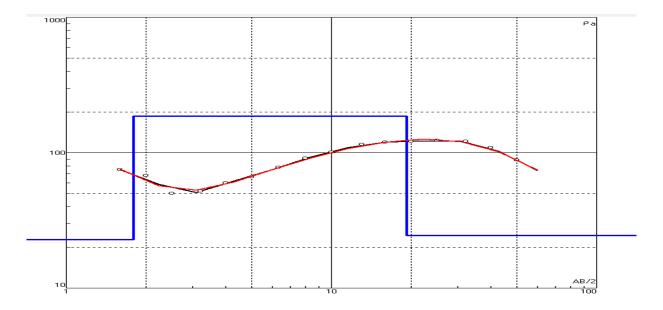


Figure 48: Interpreted Graph for VES 42

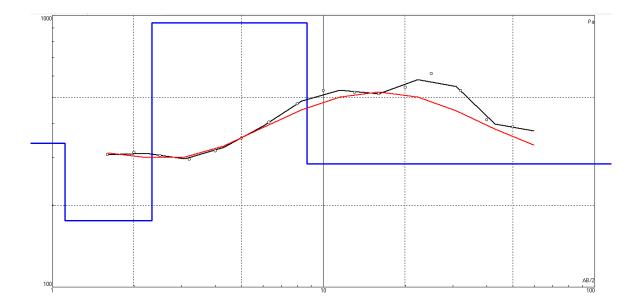
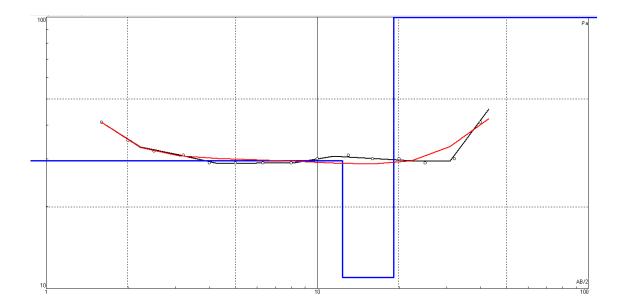



Figure 49: Interpreted Graph for VES 43

Field photos

Geotechnical Soil Investigations

SEGMENTS DEFINITION

Segment 1: Angle Point 1 (MN01) – Angle Point 2 (MN02) (Inclusive Test Points In-between)
Segment 2: Angle Point 2 (MN02) – Angle Point 3 (MN03) (Inclusive Test Points In-between)
Segment 3: Angle Point 3 (MN03) – Angle Point 4 (MN04) (Inclusive Test Points In-between)
Segment 4: Angle Point 4 (MN04) – Angle Point 5 (MN05) (Inclusive Test Points In-between)
Segment 5: Angle Point 5 (MN05) – Angle Point 6 (MN06) (Inclusive Test Points In-between)
Segment 6: Angle Point 6 (MN06) – Angle Point 7 (MN07) (Inclusive Test Points In-between)
Segment 7: Angle Point 7 (MN07) – Angle Point 8 (MN08) (Inclusive Test Points In-between)
Segment 8: Angle Point 8 (MN08) – Angle Point 9 (MN09) (Inclusive Test Points In-between)
Segment 9: Angle Point 9 (MN09) – Angle Point 10 (MN10) (Inclusive Test Points In-between)

Segment 11: Angle Point 11 (MN11) – Angle Point 12 (MN12) (Inclusive Test Points Inbetween)

Segment 12: Angle Point 12 (MN12) – Angle Point 13 (MN13) (Inclusive Test Points Inbetween)

Segment 13: Angle Point 13 (MN13) – Angle Point 14 (MN14) (Inclusive Test Points Inbetween)

Segment 14: Angle Point 14 (MN14) – Angle Point 15 (MN15) (Inclusive Test Points Inbetween)

Segment 15: Angle Point 15 (MN15) – Angle Point 16 (MN16) (Inclusive Test Points Inbetween)

Segment 16: Angle Point 16 (MN16) – Angle Point 17 (MN17) (Inclusive Test Points Inbetween)

Segment 17: Angle Point 17 (MN17) – Angle Point 18 (MN18) (Inclusive Test Points Inbetween)

Segment 18: Angle Point 18 (MN18) – Angle Point 19 (MN19) (Inclusive Test Points Inbetween)

Segment 19: Angle Point 19 (MN19) – Angle Point 20 (MN20) (Inclusive Test Points Inbetween)

Segment 20: Angle Point 20 (MN20) – Angle Point 21 (MN21) (Inclusive Test Points Inbetween)

Segment 21: Angle Point 21 (MN21) – Angle Point 22 (MN22) (Inclusive Test Points Inbetween) Segment 22: Angle Point 22 (MN22) – Angle Point 23 (MN23) (Inclusive Test Points Inbetween)

Segment 23: Angle Point 23 (MN23) – Angle Point 24 (MN24) (Inclusive Test Points Inbetween)

Segment 24: Angle Point 24 (MN24) – Angle Point 25 (MN25) (Inclusive Test Points Inbetween)

Segment 25: Angle Point 25 (MN25) – Angle Point 26 (MN26) (Inclusive Test Points Inbetween)

Segment 26: Angle Point 26 (MN26) – Angle Point 27 (MN27) (Inclusive Test Points Inbetween)

Segment 27: Angle Point 27 (MN27) – Angle Point 28 (MN28) (Inclusive Test Points Inbetween)

Segment 28: Angle Point 28 (MN28) – Angle Point 29 (MN29) (Inclusive Test Points Inbetween)

Segment 29: Angle Point 29 (MN29) – Angle Point 30 (MN30) (Inclusive Test Points Inbetween)

Segment 30: Angle Point 30 (MN30) – Angle Point 31 (MN31) (Inclusive Test Points Inbetween)

Segment 31: Angle Point 31 (MN31) – Angle Point 32 (MN32) (Inclusive Test Points Inbetween)

Segment 32: Angle Point 32 (MN32) – Angle Point 33 (MN33) (Inclusive Test Points Inbetween)

Segment 33: Angle Point 33 (MN33) – Angle Point 34 (MN34) (Inclusive Test Points Inbetween)

Segment 34: Angle Point 34 (MN34) – Angle Point 35 (MN35) (Inclusive Test Points Inbetween)

Segment 35: Angle Point 35 (MN35) – Angle Point 36 (MN36) (Inclusive Test Points Inbetween)

Segment 36: Angle Point 36 (MN36) – Angle Point 37 (MN37) (Inclusive Test Points Inbetween)

Segment 37: Angle Point 37 (MN37) – Angle Point 38 (MN38) (Inclusive Test Points Inbetween)

Segment 38: Angle Point 38 (MN38) – Angle Point 39 (MN39) (Inclusive Test Points Inbetween)

APPENDIX

CLASSIFICATION TESTS

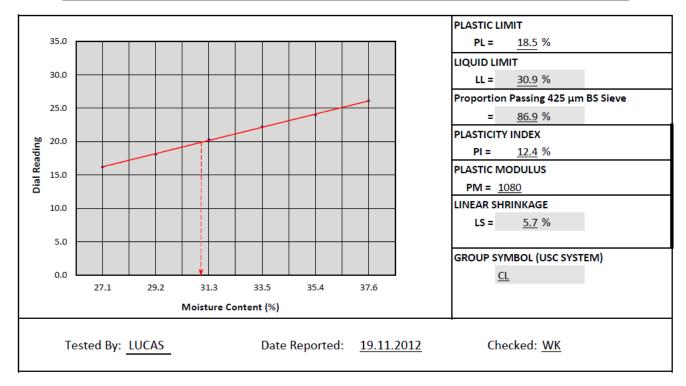
SEGMENT 1

<u> ATTERBERG LIMITS BS 1377 - 2: 1990</u>

<u>MN01</u>

Project:	PROPOSED POWERLINE	Site/Location:	Nanyuki-Isiolo-Meru	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1079
Sampled By:	GCL	Depth:	2.0M	Date Tested:	17.12.2012

	LIQUID LIMIT						PL	/IT	
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.1	18.0	20.2	22.3	24.4	26.0	-	-	
Tin No	<mark>69</mark>	53	72	17	27	33	16	29	
Mass of Wet Soil (g)	49.71	40.97	35.05	40.56	47.35	54.22	20.45	24.00	
Mass of Dry Soil (g)	37.21	30.17	25.41	29.04	33.46	37.84	16.49	19.32	
	12.50	10.80	9.64	11.52	13.89	16.38	3.96	4.68	
Mass of Moisture (g)	12.50	10.00	5.01						

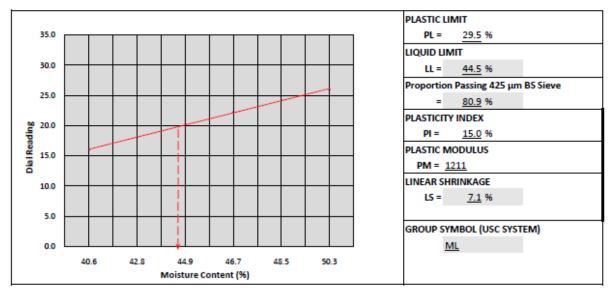

Г

т

<u>MN02</u>

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1080
Sampled By:	GCL	Depth:	2.0M	Date Tested:	17.12.2012

			LIQUID	LIMIT			PL	/IT	
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.3	22.2	24.0	26.1	-	-	
Tin No	4	9	11	7	12	8	5	3	
Mass of Wet Soil (g)	60.04	56.36	58.20	60.56	54.36	54.04	12.69	16.98	
Mass of Dry Soil (g)	47.24	43.62	44.34	45.36	40.15	39.27	10.72	14.32	
Mass of Moisture (g)	12.80	12.74	13.86	15.20	14.21	14.77	1.97	2.66	
Moisture Content (%)	27.1	29.2	31.3	33.5	35.4	37.6	18.4	18.6	18

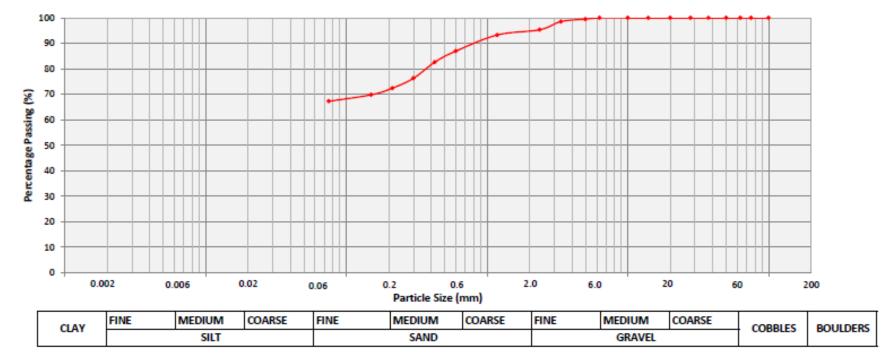


TP2-3

NESHCONSULT ENGINEERING

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN2 (TP2-3)MN3	Date Received:	06.03.2013
Material Description:	SILT with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1174
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	16.03.2013

	LIQUID LIMIT						PLASTIC LIMIT			
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.0	18.1	20.2	22.3	24.2	26.0	-	-	I	
Tin No	12	20	8	9	25	32	74	51	ł	
Mass of Wet Soil (g)	37.13	47.97	45.04	55.17	43.84	37.15	21.11	19.12	Ī	
Mass of Dry Soil (g)	26.41	33.59	31.08	37.61	29.52	24.72	16.31	14.75	Ī	
Mass of Moisture (g)	10.72	14.38	13.96	17.56	14.32	12.43	4.80	4.37	I	
Moisture Content (%)	40.6	42.8	44.9	46.7	48.5	50.3	29.4	29.6	29	



PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN01

NESHCONSULT ENGINEERING

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 01	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	13.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1079

TESTED BY: MONICA

DATE REPORTED 19.12.2012

CHECKED: WK

PROJECT:

PROPOSED POWERLINE

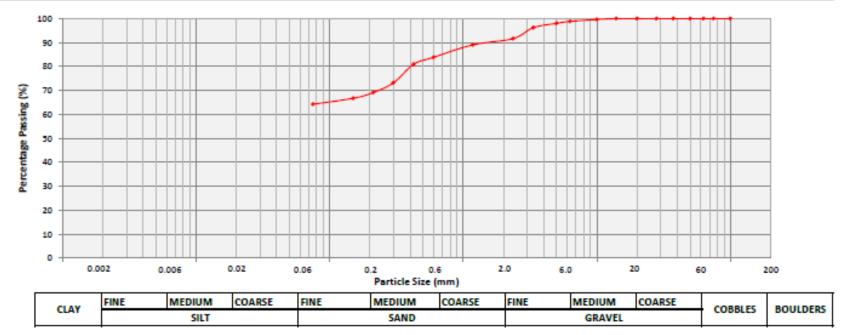
09.12.2012

DATE RECEIVED:

MN02

MATERIAL DESCRIPTION: SANDY LEAN CLAY JOB REF: DATE TESTED: GCL/TGA-342/12 13.12.2012 DEPTH: SAMPLED BY: GCL 2.0M SAMPLE No.: 1080 100 90 80 70 Percentage Passing (%) 60 50 40 30 20 10 0 0.002 0.02 2.0 20 0.006 0.06 0.2 0.6 6.0 60 200 Particle Size (mm) FINE MEDIUM COARSE FINE MEDIUM COARSE FINE MEDIUM COARSE CLAY COBBLES BOULDERS SILT SAND GRAVEL CHECKED: WK TESTED BY: MONICA DATE REPORTED 19.12.2012

NESHCONSULT ENGINEERING


MN 02

LOCATION

TP2-3

NESHCONSULT ENGINEERING

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN2 (TP2-3)MN3	DATE RECEIVED:	06.03.2013
MATERIAL DESCRIPTION:	SILT with Sand	JOB REF:	GCL/NAS-356/13	DATE TESTED:	13.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1174

DCP - CBR CORRELATION

MN01

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 01	Date of Test:	03.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1079

		DCP TES	T RESULTS							No	o. of B	low	s			
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)	0	0			50				100	0		150
0	0	0	60												_	
1	1	1	70	10.0	50			1								
2	1	2	80	10.0		PF	1									
3	2	4	90	5.0											 	
4	5	9	104	2.8	100				_							
5	5	14	117	2.6	(n			PR 2								
6	10	24	136	1.9	<u>ц</u>											
7	10	34	154	1.8	9 150		_				_				 	
8	10	44	173	1.9	Penetration (mm)											
9	15	59	199	1.7	Pen											
10	20	79	234	1.8	200										 _	
11	20	99	260	1.3							\mathbf{X}					
12	26	125	295	1.3	250								PR 3			
					300											

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	10	22.5	
PR 2	4.2	68.3	
PR 3	1.3	306.3	

Test By: LUCAS

Checked:

<u>WK</u>

MN02

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 02	Date of Test:	03.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1080

									No	o. of B	lows						
DCP TEST RESULTS												6	50 80 10		100		
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)		0											
0	0	0	50		5	50 🛉											
1	1	1	75	25.0		ļ	PR 1										
2	1	2	82	7.0		2											
3	2	4	86	2.0	10	00 -) -•		- PF	2 \$		_		_	_	_	
4	5	9	96	2.0	Ē												
5	5	14	97	0.2	Penetration (mm)							-			P	R 3	
6	10	24	110	1.3	ຼີຍີ 15	50 -											•
7	10	34	118	0.8	etra												
8	15	49	125	0.5	ene	-									_	_	
9	20	69	140	0.8	20	00											
10	25	94	145	0.2													
					25	50											
					30	00											
				D	CP/CBF		RELATI	ON									
Pene	tration In	ndex	Ave	erage (mm/blov					mated	CBR	(%)						

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	25	7.0	
PR 2	1.4	278.6	
PR 3	0.5	1040.7	

Test By: LUCAS

I

ANGLE POINT BEARING CAPACITY

MN01

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 01									
PROJECT:	PROPOSED POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012					
DEPTH:	2.0M	LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12					
MATERIAL DE	SCRIPTION: SANDY LEAN	I CLAY	-	Sample No.:	1079					

LABORATORY TE	ST RESULTS			
SHEARBOX		DENSITY		
$C(kN/m^2) =$	23	γ (kg/m ³) =	1744	
ø (°) =	21	γ (kN/m ³) =	17.11	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R Basic Soil	N _q = 7.07	
Mech.	N _y = 3.42	
M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 17.11 x 2.0 x 7.07) + (0.4 x 17.11 x 1.0 x 3.42)	690 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 690/3.0	230 kN/m⁴

Calculations By: B.K.

Checked: WK

MN02

		CALCU	LATION OF	SAFE BEARING CAPACI	TY: TP MN 02	
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH:	2.0M		2.0M LOCATION: EASTERN JOB N		JOB No.:	GCL/TGA_342/12
MATERIAL DES	MATERIAL DESCRIPTION: SANDY LEAN CLAY Sample No.: 1080					

LABORATORY TEST	LABORATORY TEST RESULTS							
SHEARBOX		DENSITY						
$C(kN/m^2) =$	23	γ (kg/m ³) =	1718					
ø (°) =	21	y (kN/m ³) =	16.85					

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R	$N_q = 7.07$	
Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 16.85 x 2.0 x 7.07) + (0.4 x 16.85 x 1.0 x 3.42)	687 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 687/3.0	229 kN/m ²

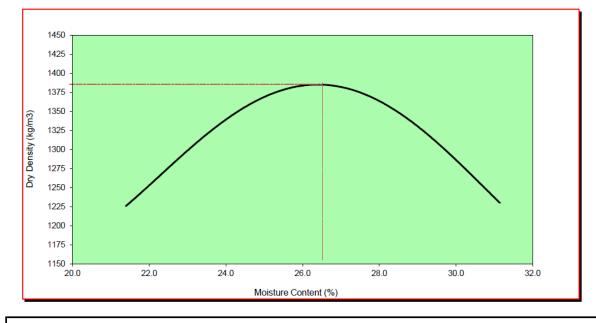
Calculations By: B.K.

TP2-3

		CALCULATION	OF SAFE BE	ARING CAPACITY: TP M	IN 02(TP2-3)M3	
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DE	ESCRIPTION:	SILT with Sand			Sample No.:	1174

LABORATORY TEST RESULTS			
SHEARBOX	DENSITY		
$C(kN/m^2) = 23$	γ (kg/m³) =	1744	
ø (°) = 21	γ (kN/m³) =	17.11	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R Basic	N _q = 7.07	
Soil Mech. Tomlinson, M.J.	N _y = 3.42	
Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 17.11 x 2.0 x 7.07) + (0.4 x 17.11 x 1.0 x 3.42)	690 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 690/3.0	230 kN/m²


Calculations By: <u>B.K.</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN01

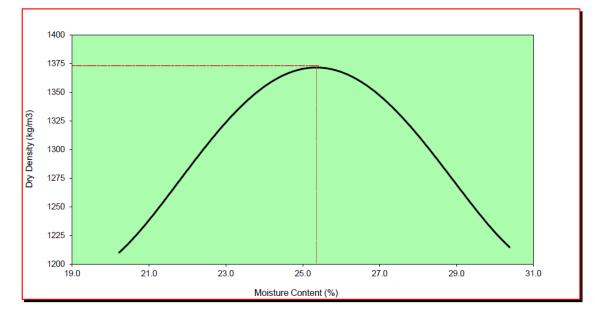
Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1079
Material Description:	SANDY LEAN CLAY	Sample Ref:	TP MN 01		Date received:	09.12.2012	
Moisture Ado	dition	250cc	300cc	350cc	400cc	450cc	500cc
Mass of Mou	ld+Base+Soil	5483	5621	5720	5750	5702	5608
Mass of Mould+Base 3		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil 148		1488	1626	1725	1755	1707	1613
Bulk Density	(Kgs/m³)	1488	1626	1725	1755	1707	1613
Tin No.		G16	G01	G03	G21	G27	G19
Weight Wet S	Soil	244.0	237.0	272.0	314.0	305.0	240.0
Weight of Dry	y Soil	201.0	192.0	217.0	247.0	236.0	183.0
Weight of Wa	ater	43.0	45.0	55.0	67.0	69.0	57.0
Moisture Cor	ntent (%)	21.4	23.4	25.3	27.1	29.2	31.1

Maximum Dry Density (Kg/m³): <u>1380</u>

Optimum Moisture Content (%): 26.4%

Tested By: <u>STEVE</u>

Г

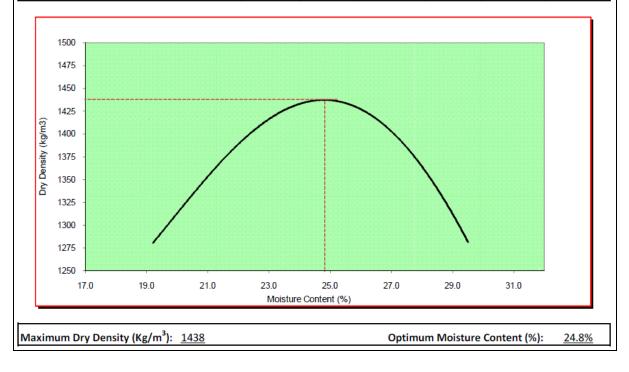

Date Reported: 22.01.2013

Checked By: WK

٦.

Μ	Ν	0	2

Project:	PROPOSED POWERLINE	LOCATION:	EASTERN		Depth:	2.0M	
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1080
Material Description:	SANDY LEAN CLAY	Sample Ref: TP MN 02			Date received:	09.12.2012	
Moisture Ado	dition	200cc	250cc	300cc	350cc	400cc	450cc
Mass of Mould+Base+Soil		5449	5587	5689	5723	5665	5579
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1454	1592	1694	1728	1670	1584
Bulk Density	(Kgs/m ³)	1454	1592	1694	1728	1670	1584
Tin No.		G16	G27	G33	G35	G23	G41
Weight Wet S	Soil	231.3	253.1	272.8	292.1	275.2	308.1
Weight of Dry	y Soil	192.4	206.8	219.1	231.3	214.7	236.3
Weight of Wa	ater	38.9	46.3	53.7	60.8	60.5	71.8
Moisture Cor	ntent (%)	20.2	22.4	24.5	26.3	28.2	30.4


Maximum Dry Density (Kg/m³): <u>1370</u> Optimum Moisture Content (%): <u>25.4%</u>

Tested By: <u>STEVE</u>

Date Reported: 25.01.2013

Checked By: WK

				-			
Project:	NANYUKI-ISIOLO-MERU TRANSMISSION LINE LOCATION: MN2 - MN3					Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU COUNTIES		Job Ref.:	GCL/NC-356/0	3	Sample No.:	1178
Material Description:			Sample Ref:	MN2 (TP2-3) N	1N3	Date received:	06.03.2013
Moisture Ad	dition	200cc	250cc	300cc	350cc	400cc	450cc
Mass of Mou	ld+Base+Soil	4485	4622	4720	4762	4715	4619
Mass of Mould+Base		2959	2959	2959	2959	2959	2959
Mass of Com	pacted Soil	1526	1663	1761	1803	1756	1660
Bulk Density	(Kgs/m ³)	1526	1663	1761	1803	1756	1660
Tin No.		G07	G28	G17	G38	G32	G35
Weight Wet	Soil	311.6	335.2	298.2	301.5	335.9	352.0
Weight of Dry Soil		261.4	276.1	241.3	239.7	263.0	271.8
Weight of Water		50.2	59.1	56.9	61.8	72.9	80.2
Moisture Co	ntent (%)	19.2	21.4	23.6	25.8	27.7	29.5

TP2-3

CHEMICAL ANALYSIS

Angle Point MN01					
Depth	2.0m				
рН	7.42				
Chloride(%) mg/l	0.32				
Sulphate (mg/l)	-				

Angle Point MN02					
Depth	2.0m				
рН	7.69				
Chloride(%) mg/l	0.46				
Sulphate (mg/l)	0.001				

TP2-3					
Depth	2.0m				
рН	7.24				
Chloride(%) mg/l	0.05				
Sulphate (mg/l)	0.017				

INSITU DENSITY TEST

TP2-3					
Depth (m)	2.0				
Bulk density (kg/m3)	1535				
Moisture Content (%)	22.7				
Dry Density (kg/m3)	1251				
Maximum Dry Density (kg/m3)	1438				
Relative Compaction (%)	87				

ANGLE POINT 1-2 LOG

PR	OJECT:	NAN	YUKI-ISIOLO-MERU POWERLINE	JOB REF:		GCL/NCE_342/12
5	SITE:		NANYUKI-ISIOLO-MERU			
			MN 01			MN 02
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
0.5		0.9	Dark Grey CLAY (Black Cotton Soil)			Dark Grey CLAY (Black Cotton Soil)
1					1.0	
1.5			Grey Elastic SILT with Sand			Light Grey Elastic SILT with Sand and Gravel
2	\sim	2.0			2.0	

TEST POINT 2-3 LOG

÷

PR	O JECT:	NANY	/UKI-ISIOLO-MERU POWERLINE			
5	SITE:		NANYUKI-ISIOLO-MERU			
		MN2 (TP2-3) MN3				
SCALE	LEGEND	LEGEND DEPTH (m) MATERIAL DESCR				
0.5		1.0	Dark Grey CLAY (Black Cotton Soil)			
1.5	* × × * × × × ×	2.0	Grey Elastic SILT with Sand			
2.5	V					

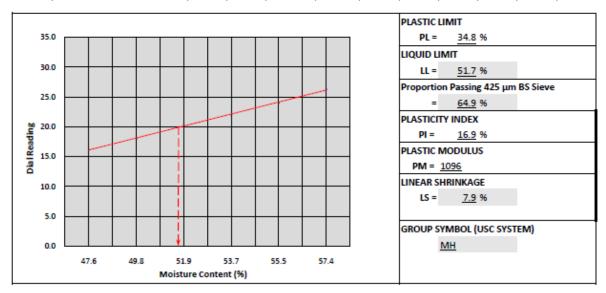
SEGMENT 2

ATTERBERG LIMITS BS 1377 - 2: 1990

MN03

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	POORLY-GRADED GRAVEL	Job Reference:	GCL/TGA-332/12	Sample No.:	1081
Sampled By:	GCL	Depth:	2.0M	Date Tested:	17.12.2012

		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	1 2 3 4 5 6					1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.1	18.2	20.1	22.0	24.3	26.2	-	-	
Tin No	6	26	47	28	21	33	12	20	
Mass of Wet Soil (g)	30.51	35.47	39.65	44.46	39.13	42.37	26.15	28.66	
Mass of Dry Soil (g)	21.76	24.96	27.53	30.41	26.37	28.19	20.51	22.46	
Mass of Moisture (g)	8.75	10.51	12.12	14.05	12.76	14.18	5.64	6.20	
Moisture Content (%)	40.2	42.1	44.0	46.2	48.4	50.3	27.5	27.6	27

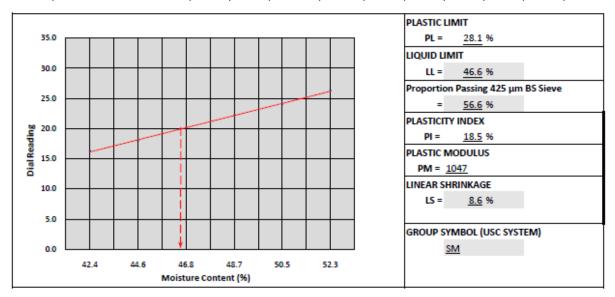


TP3-4A

NESHCONSULT ENGINEERING

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN3 (TP3-4A)MN4	Date Received:	06.03.2013
Material Description:	ELASTIC SILT with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1175
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	16.03.2013

			LIQUID	LIMIT			PL	ASTIC LIN	1IT
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.2	22.0	24.1	26.3	-	-	
Tin No	1	30	26	9	41	29	33	23	
Mass of Wet Soil (g)	40.13	33.17	30.98	40.59	37.82	36.26	20.56	24.86	
Mass of Dry Soil (g)	27.19	22.14	20.39	26.41	24.32	23.04	15.26	18.43	
Mass of Moisture (g)	12.94	11.03	10.59	14.18	13.50	13.22	5.30	6.43	
Moisture Content (%)	47.6	49.8	51.9	53.7	55.5	57.4	34.7	34.9	34.8

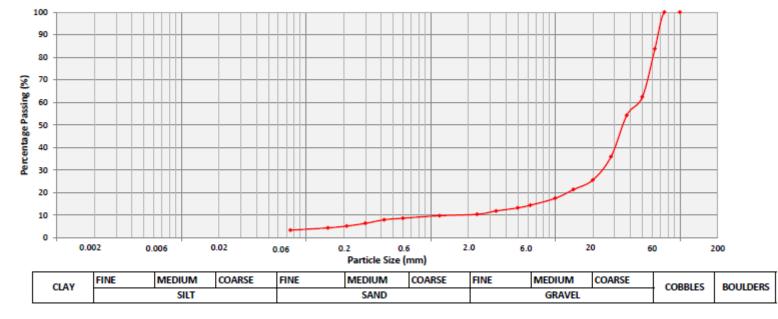


TP3-4B

NESHCONSULT ENGINEERING

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN3 (TP3-4B)MN4	Date Received:	06.03.2013
Material Description:	Silty SAND with Gravel	Job Reference:	GCL/NAS-356/13	Sample No.:	1176
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	16.03.2013

			LIQUID	LIMIT			PL	ASTIC LIN	/IT
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.0	20.1	22.2	24.1	26.3	-	-	I
Tin No	8	59	42	27	12	55	46	2	ł
Mass of Wet Soil (g)	53.57	60.33	48.79	52.06	59.48	65.03	14.89	18.88	Ī
Mass of Dry Soil (g)	37.62	41.72	33.24	35.01	39.52	42.70	11.63	14.73	Ī
Mass of Moisture (g)	15.95	18.61	15.55	17.05	19.96	22.33	3.26	4.15	I
Moisture Content (%)	42.4	44.6	46.8	48.7	50.5	52.3	28.0	28.2	28.1



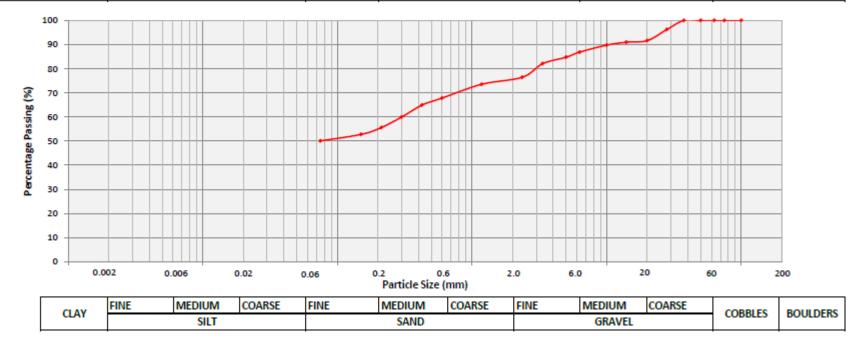
PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN03

NESHCONSULT ENGINEERING

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 03	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	POORLY-GRADED GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	13.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1081

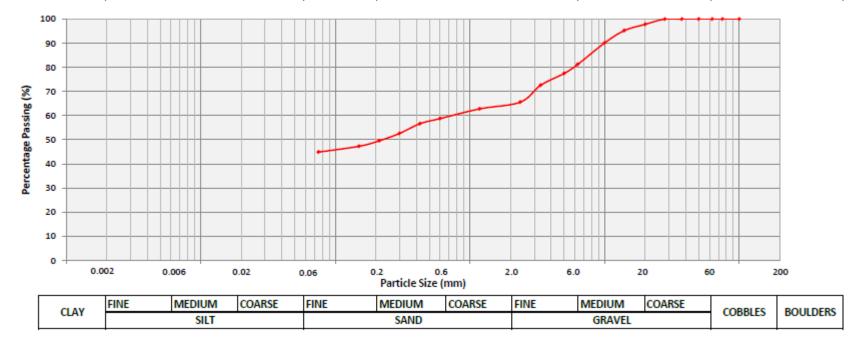
TESTED BY: MONICA


DATE REPORTED 19.12.2012

CHECKED: WK

TP3-4A

NESHCONSULT ENGINEERING


PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN3 (TP3-4A)MN4	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	ELASTIC SILT with Sand and Gravel	JOB REF:	GCL/NAS-355/13	DATE TESTED:	13.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1175

TP3-4B

NESHCONSULT ENGINEERING

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN3(TP3-4B)MN4	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	Silty SAND with Gravel	JOB REF:	GCL/NAS-355/13	DATE TESTED:	13.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1176

DCP - CBR CORRELATION

MN03

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 03	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1081

								No. of	Blows		
		DCP TES	T RESULTS		0)	20	40	60	80	100
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)	0						
0	0	0	50		50						
1	2	2	65	7.5	50						
2	2	4	74	4.5	-						
3	5	9	90	3.2							
4	5	14	95	1.0	<u><u> </u></u>		PI	1			
5	10	24	104	0.9	Penetration (mm) 120					PR 2	
6	10	34	108	0.4	tior					•	
7	16	50	117	0.6	etra						•
8	20	70	127	0.5	b 150						
9	25	95	132	0.2	L.						
					200						
					250						
					CP/CBR CO	RRELA					
Pene	tration Ir	ndex	Ave	erage (mm/blov	v)		Estimat	ed CBR (%)			
	PR 1			4.1			7	0.4			

Average (mm/blow)	Estimated CBR (%)	
4.1	70.4	
1.3	306.3	

Test By: LUCAS

PR 2

ANGLE POINT BEARING CAPACITY

MN03

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 03						
PROJECT:	PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MER				DATE RECEIVED:	09.12.2012	
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DESCRIPTION: POORLY-GRADED GRAVEL Sample No.:					1081		

LABORATORY TEST RESULTS

DENSITY	
γ (kg/m ³) = 1780	
y (kN/m ³) = 17.46	
	$\overline{\gamma (\text{kg/m}^3)} = 1780$

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 19.32	
Whitlow. R	N _q = 9.60	
Basic Soil Mech.	N _y = 5.72	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 28 x 19.32) + (0.8 x 17.46 x 2.0 x 9.60) + (0.4 x 17.46 x 1.0 x 5.72)	1012 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 1012/3.0	337 kN/m ²

Calculations By: B.K.

TP3-4A

CALCULATION OF SAFE BEARING CAPACITY: MN2 (TP2-3) MN3						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESCRIPTION: Elastic SILT with S		Sand		Sample No.:	1175	

LABORATORY TEST R	ESULTS		
SHEARBOX		DENSITY	
$C(kN/m^2) =$	23	γ (kg/m ³) = 1718	
ø (°) =	21	γ (kN/m ³) = 16.85	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
	N _q = 7.07	
Whitlow. R Basic Soil Mech.	N _Y = 3.42	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 16.85 x 2.0 x 7.07) + (0.4 x 16.85 x 1.0 x 3.42)	687 kN/m²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 687/3.0	229 kN/m ²

Calculations By: B.K.

TP3-4B

CALCULATION OF SAFE BEARING CAPACITY: MN3 (TP3-4B) MN4						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESCRIPTION: POORLY-GRADE		POORLY-GRADED	GRAVEL		Sample No.:	1176
		Silty SAND with O	Gravel			
LABORATORY TEST RESULTS						

SHEARBOX		DENSITY
$C(kN/m^2) =$	28	γ (kg/m ³) = 1780
ø (°) =	24	γ (kN/m ³) = 17.46

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 19.32	
	N _q = 9.60	
Whitlow. R Basic Soil Mech.	N _y = 5.72	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 28 x 19.32) + (0.8 x 17.46 x 2.0 x 9.60) + (0.4 x 17.46 x 1.0 x 5.72)	1012 kN/m²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 1012/3.0	337 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

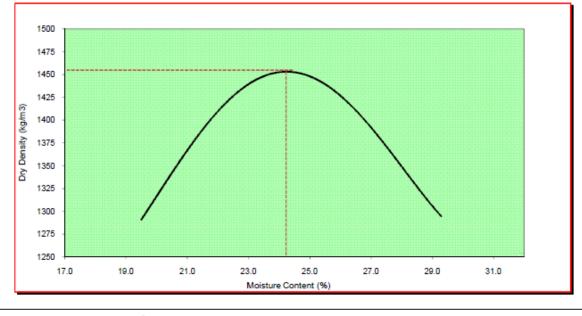
<u>BS 1377 – 4: 1990</u>

MN03

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1081
Material Description:	POORLY-GRADED GRAVEL	Sample Ref: TP MN 03			Date received:	09.12.2012	
Moisture Ado	dition	150cc	200cc	250cc	300cc	350cc	400cc
Mass of Mould+Base+Soil		5513	5640	5735	5778	5728	5643
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1518	1645	1740	1783	1733	1648
Bulk Density (Kgs/m³)		1518	1645	1740	1783	1733	1648
Tin No.		G29	G39	G11	G43	G25	G38
Weight Wet S	Soil	229.6	273.0	267.3	306.7	307.0	318.9
Weight of Dry Soil		189.1	221.6	213.8	241.3	237.4	242.5
Weight of Water 40		40.5	51.4	53.5	<mark>65.4</mark>	69.6	76.4
Moisture Content (%) 21.4		23.2	25.0	27.1	29.3	31.5	

Maximum Dry Density (Kg/m³): <u>1408</u>

Optimum Moisture Content (%): 26.4%


Tested By: STEVE

Г

Date Reported: 25.01.2013

Checked By: WK

Project:	NANYUKI-ISIOLO-MERU TRANSMISS	ION LINE	LOCATION:	MN3 - MN4		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU COUNTIES		Job Ref.:	GCL/NC-356/0)3	Sample No.:	1175
Material						Date	
Description:	:		Sample Ref:	MN3 (TP3-4A) MN4		received:	06.03.2013
Moisture Ad	dition	150cc	200cc	250cc	300cc	350cc	400cc
Mass of Mou	ld+Base+Soil	4501	4635	4738	4774	4721	4633
Mass of Mould+Base		2959	2959	2959	2959	2959	2959
Mass of Compacted Soil		1542	1676	1779	1815	1762	1674
Bulk Density	(Kgs/m³)	1542	1676	1779	1815	1762	1674
Tin No.		G02	G34	G23	G50	G45	G24
Weight Wet S	Soil	292.3	259.3	322.4	310.2	278.3	307.2
Weight of Dry Soil		244.6	213.8	261.3	247.8	219.0	237.6
Weight of Water		47.7	45.5	61.1	62.4	59.3	69.6
Moisture Cor	ntent (%)	19.5	21.3	23.4	25.2	27.1	29.3

Optimum Moisture Content (%): 24.3%

CHEMICAL ANALYSIS

Angle Point MN03					
Depth	2.0m				
рН	7.5				
Chloride(%) mg/l	0.39				
Sulphate (mg/l)	0.001				

TP3-4A					
Depth	2.0m				
рН	7.92				
Chloride(%) mg/l	0.008				
Sulphate (mg/l)	0.033				

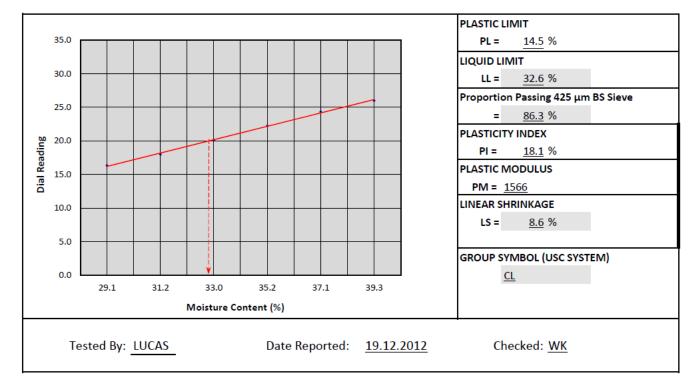
TP3-4B					
Depth	2.0m				
рН	7.90				
Chloride(%) mg/l	0.009				
Sulphate (mg/l)	0.037				

ANGLE POINT 3 LOG

DATE	5	03.09.12.2012
LOGGED	BY:	LUCAS
		MN 03
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
	1.8	Dark Grey CLAY (Black Cotton Soil)
		Light Grey Fragmented ROCK boulder
$-\Delta $	2.0	and cobble fraction
V		

TEST POINT 3-4A, 3-4B LOGS

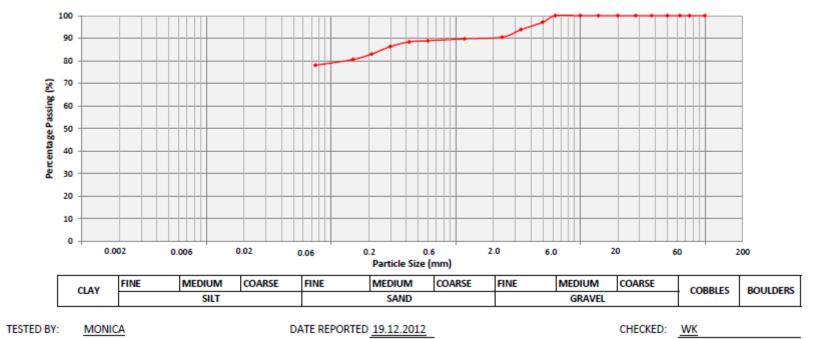
JOB REF:		GCL/NCE_356/03	DATI		23 - 28.02.2013
			LOGGED	BY:	STEVE
		13 (TP3-4A) MN4	MN3 (TP3-4B) MN4		
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
		Dark Grey CLAY (Black Cotton Soil)		0.8	Dark Grey CLAY (Black Cotton Soil)
· · · · · ·	1.2		0 0 0 0 0 7 0 0 7 0 0 7 0 7		
	2.0	Light Grey Elastic SILT with Sand and Gravel			Greyish Brown Silty SAND with Gravel
V			V		


SEGMENT 3

ATTERBERG LIMITS BS 1377 - 2: 1990

MN04

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1082
Sampled By:	GCL	Depth:	2.0M	Date Tested:	17.12.2012


		LIQUID LIMIT					PLASTIC LIMIT			
Test No.	1	2	3	4	5	6	1	1 2		
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.3	18.0	20.1	22.2	24.3	26.0	-	-		
Tin No	17	32	46	51	67	72	16	15		
Mass of Wet Soil (g)	42.62	39.15	33.99	46.82	39.43	48.64	25.52	28.56		
Mass of Dry Soil (g)	33.01	29.84	25.56	34.63	28.76	34.92	22.31	24.94		
Mass of Moisture (g)	9.61	9.31	8.43	12.19	10.67	13.72	3.21	3.62		
Moisture Content (%)	29.1	31.2	33.0	35.2	37.1	39.3	14.4	14.5	14	

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN04

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 04	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	13.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1082

DCP - CBR CORRELATION

MN04

ANGLE POINT BEARING CAPACITY

MN04

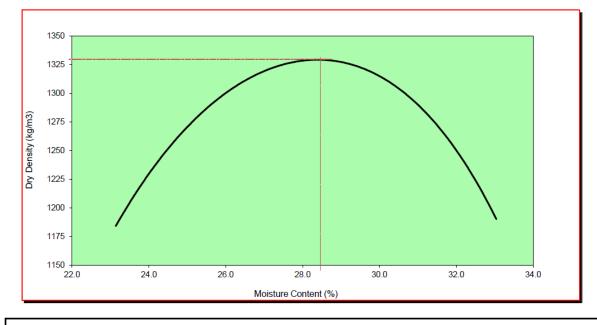
CALCULATION OF SAFE BEARING CAPACITY: TP MN 04							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012	
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DESCRIPTION: SANDY LEAN CLAY		I CLAY		Sample No.:	1082		

LABORATORY TEST RESULTS

SHEARBOX		DENSITY	
$C(kN/m^2) =$	23	γ (kg/m ³) = 17:	10
ø (°) =	21	γ (kN/m ³) = 16.7	78

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R	$N_q = 7.07$	
Basic Soil Mech.	N _Y = 3.42	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 16.78 x 2.0 x 7.07) + (0.4 x 16.78 x 1.0 x 3.42)	686 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 686/3.0	229 kN/m ²

Calculations By: B.K.


Checked: <u>WK</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN04

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M	
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1082	
Material Description:	n: SANDY LEAN CLAY		Sample Ref:	TP MN 04		Date received:	09.12.2012	
Moisture Ado	dition	150cc	200cc	250cc	300cc	350cc	400cc	
Mass of Mou	ld+Base+Soil	4414	4544	4638	4668	4646	4539	
Mass of Mou	ld+Base	2956	2956	2956	2956	2956	2956	
Mass of Com	pacted Soil	1458	1588	1682	1712	1690	1583	
Bulk Density (Kgs/m³)		1458	1588	1682	1712	1690	1583	
Tin No.		G37	G01	G38	G04	G27	G40	
Weight Wet S	Soil	149.0	200.0	213.7	200.0	169.0	153.0	
Weight of Dry	y Soil	121.0	160.0	168.0	155.0	129.0	115.0	
Weight of Water 28.0			40.0	45.7	45.0	40.0	38.0	
Moisture Content (%) 23.1		23.1	25.0	27.2	29.0	31.0	33.0	

Optimum Moisture Content (%): <u>28.6%</u>

Maximum Dry Density (Kg/m³): <u>1330</u>

٦

Date Reported: 25.01.2013 Checked By: WK

Tested By: STEVE

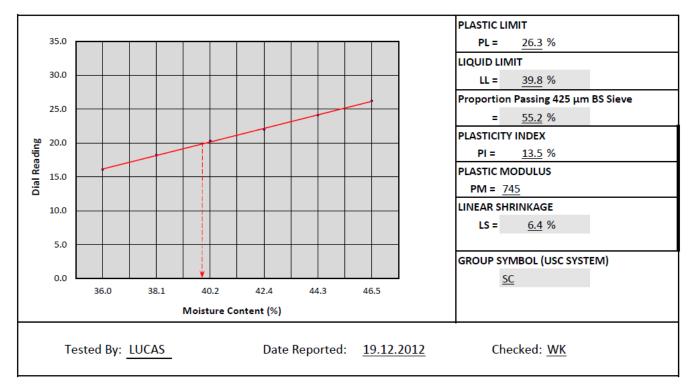
Г

CHEMICAL ANALYSIS

Angle Point MN04							
Depth	2.0m						
рН	7.3						
Chloride(%) mg/l	-						
Sulphate (mg/l)	-						

ANGLE POINT LOG

PR	OJECT:	N AN	N AN YUKI-ISIO LO - ME RU POWERLINE						
S	ITE:		N ANYUKI-ISIOLO-MERU						
		MN 04							
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION						
0.5		1.1	Dark Grey CLAY (Black Cotton Soil)						
1.5	^	2.0	Grey Elastic SILT with Sand						
2.5	V		<u>NOTE:</u> Presence of water attributed to leaking pipe						


SEGMENT 4

ATTERBERG LIMITS BS 1377 - 2: 1990

MN05

Project:	PROPOSED POWERLINE	Site/Location: NANYUKI-ISIOLO-MERU		Date Received:	09.12.2012
Material Description:	CLAYEY SAND WITH GRAVEL	Job Reference:	GCL/TGA-342/12	Sample No.:	1083
Sampled By:	GCL	Depth:	2.0M	Date Tested:	17.12.2012


			PLASTIC LIMIT						
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.1	18.2	20.3	22.0	24.1	26.2	-	-	
Tin No	10	26	50	44	70		<u> </u>		
111110	19	36	56	41	76	27	61	57	
Mass of Wet Soil (g)	32.99	29.09	32.24	36.18	39.52	35.45	23.97	17.01	
Mass of Dry Soil (g)	24.26	21.07	22.99	25.41	27.39	24.20	18.99	13.46	
Mass of Moisture (g)	8.73	8.02	9.25	10.77	12.13	11.25	4.98	3.55	
Moisture Content (%)	36.0	38.1	40.2	42.4	44.3	46.5	26.2	26.4	26

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN05

PROJECT:	PROPOSED POWERLINE		MN 05	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	CLAYEY SAND WITH GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	13.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1083

DCP - CBR CORRELATION

MN05

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location MN 05		Date of Test:	03.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1083

										No. o	f Blo	ws				
		DCP TES	T RESULTS				D	20	40		60	8	0	1	00	120
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)		0										
0	0	0	75	(5	0		4				_				
1	2	2	80	2.5			PR 1	_=								
2	5	7	90	2.0												
3	5	12	95	1.0	10	0							_			
4	5	17	98	0.6	Ê				PR 2							
5	10	27	117	1.9	Penetration (mm)											
6	10	37	129	1.2	1 5	0										
7	10	47	137	0.8	etra							P R	3			
8	15	62	155	1.2	ene									\succ		
9	20	82	167	0.6	20	0										
10	20	102	185	0.9												
					25	0										
					30	0										
!				D	CP/CBR	CO	RRELATI	ON								
Pene	tration Ir	dex	Ave	erage (mm/blov					timated (CBR (%)					

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	2.1	165.8	
PR 2	1.4	278.6	
PR 3	0.7	676.5	

Test By: LUCAS

Checked: <u>WK</u>

ANGLE POINT BEARING CAPACITY

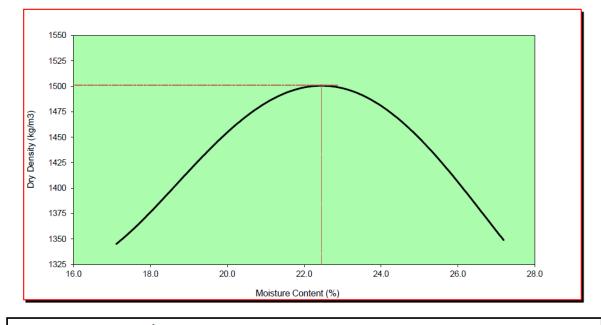
MN05

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 05									
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012				
DEPTH:	2.0M		LOCATION: EASTERN		JOB No.:	GCL/TGA_342/12				
MATERIAL DE	SCRIPTION:	CLAYEY SAN	D WITH GRAV	VEL	Sample No.:	1083				

LABORATORY TES	T RESULTS				
SHEARBOX		DENSITY			
$C(kN/m^2) =$	28	γ (kg/m ³) =	1842		
ø (°) =	23	γ (kN/m ³) =	18.07		

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
Whitlow. R	N _q = 8.66	
Basic Soil Mech.	N _y = 4.82	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 28 x 18.05) + (0.8 x 18.07 x 2.0 x 8.66) + (0.4 x 18.07 x 1.0 x 4.82)	942 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 942/3.0	314 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN05

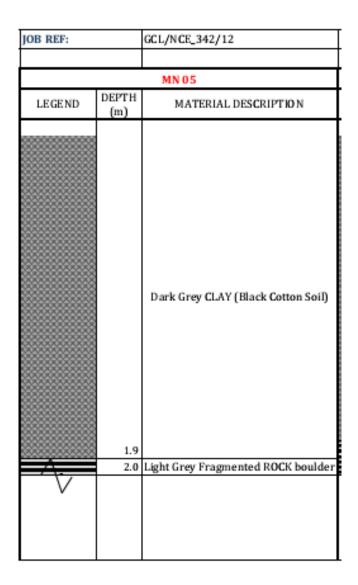
Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1083
Material Description:	CLAYEY SAND WITH GRAVEL				Date received:	09.12.2012	
Moisture Ado	dition	50cc	100cc	150cc	200cc	250cc	300cc
Mass of Moul	ld+Base+Soil	5570	5701	5804	5840	5792	5711
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil 1		1575	1706	1809	1845	1797	1716
Bulk Density	(Kgs/m ³)	1575	1706	1809	1845	1797	1716
Tin No.		G27	G19	G35	G37	G41	G13
Weight Wet S	Soil	308.0	309.0	340.0	336.0	272.0	290.0
Weight of Dry	y Soil	263.0	259.0	280.0	272.0	217.0	228.0
Weight of Wa	ater	45.0	50.0	60.0	64.0	55.0	62.0
Moisture Cor	ntent (%)	17.1	19.3	21.4	23.5	25.3	27.2

Optimum Moisture Content (%):

Maximum Dry Density (Kg/m³): <u>1500</u>

Г

<u>22.8%</u>

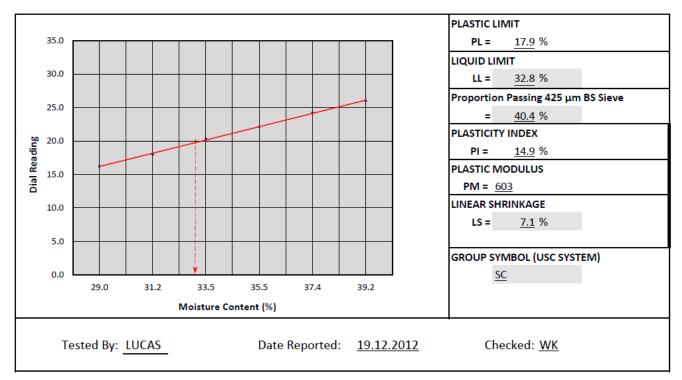

٦

Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

Angle P	Angle Point MN05							
Depth	2.0m							
рН	8.05							
Chloride(%) mg/l	0.53							
Sulphate (mg/l)	0.002							

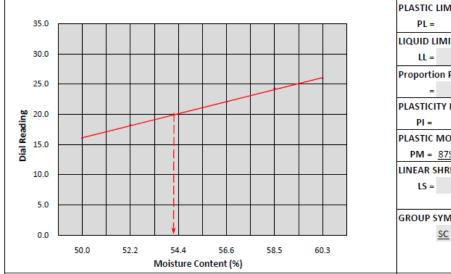
ANGLE POINT 5 LOG


SEGMENT 5

ATTERBERG LIMITS BS 1377 - 2: 1990

MN06

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	CLAYEY SAND WITH GRAVEL	Job Reference:	GCL/TGA-342/12	Sample No.:	1084
Sampled By:	GCL	Depth:	2.0M	Date Tested:	17.12.2012


		LIQUID LIMIT						PLASTIC LIMIT		
Test No.	1	1 2 3 4 5 6				1	2	Av.		
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.2	18.0	20.3	22.1	24.2	26.0	-	-		
Tin No	18	67	28	37	59	55	61	49		
Mass of Wet Soil (g)	28.88	32.89	36.64	40.54	41.37	45.02	12.22	15.26		
Mass of Dry Soil (g)	22.39	25.07	27.45	29.92	30.11	32.34	10.37	12.94		
Mass of Moisture (g)	6.49	7.82	9.19	10.62	11.26	12.68	1.85	2.32		
Moisture Content (%)	29.0	31.2	33.5	35.5	37.4	39.2	17.8	17.9	17.	

TP6-7A

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN6 (TP6-7A)MN7	Date Received:	06.03.2013
Material Description:	Clayey SAND with Gravel	Job Reference:	GCL/NAS-356/13	Sample No.:	1177
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	16.03.2013

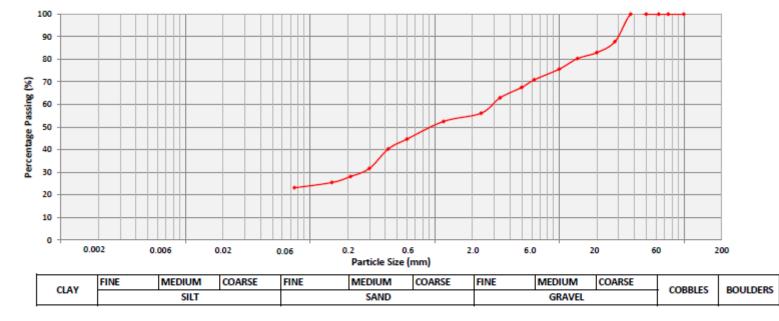
		LIQUID LIMIT				PL	PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.1	18.2	20.0	22.1	24.3	26.0	-	-	
Tin No	17	32	46	51	67	72	16	15	
Mass of Wet Soil (g)	47.46	36.48	49.88	40.78	47.79	43.95	28.83	35.54	
Mass of Dry Soil (g)	31.64	23.97	32.30	26.04	30.15	27.42	21.14	26.02	
Mass of Moisture (g)	15.82	12.51	17.58	14.74	17.64	16.53	7.69	9.52	
Moisture Content (%)	50.0	52.2	54.4	56.6	58.5	60.3	36.4	36.6	3

PLASTIC LI	MIT	
PL =	36.5 %	
LIQUID LIN	літ	
LL =	54.2 %	
Proportior	n Passing 425 µ	m BS Sieve
=	<u>49.6</u> %	
PLASTICIT	Y INDEX	
PI =	<u>17.7</u> %	
PLASTIC M	IODULUS	
PM = <u>8</u>	79	
LINEAR SH	RINKAGE	
LS =	<u>8.6</u> %	
GROUP SY	MBOL (USC SY	STEM)
<u>s</u>	<u>c</u>	

TP6-7B

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN6 (TP6-7B)MN7	Date Received:	06.03.2013
Material Description:	Silty SAND with Gravel	Job Reference:	GCL/NAS-356/13	Sample No.:	1178
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	17.03.2013

			LIQUID LIMIT					PL	1IT	
Test No.		1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (m	m)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (m	n)	16.0	18.3	20.2	22.1	24.0	26.2	-	-	
Tin No		3	63	56	41	59	27	16	57	
Mass of Wet Soil (g)	50.28	33.26	39.03	37.02	46.82	39.26	24.30	32.10	
Mass of Dry Soil (g	;)	36.41	23.72	27.41	25.60	31.53	26.12	18.62	24.56	
Mass of Moisture (g)	13.87	9.54	11.62	11.42	15.29	13.14	5.68	7.54	
Moisture Content (%	6)	38.1	40.2	42.4	44.6	48.5	50.3	30.5	30.7	30

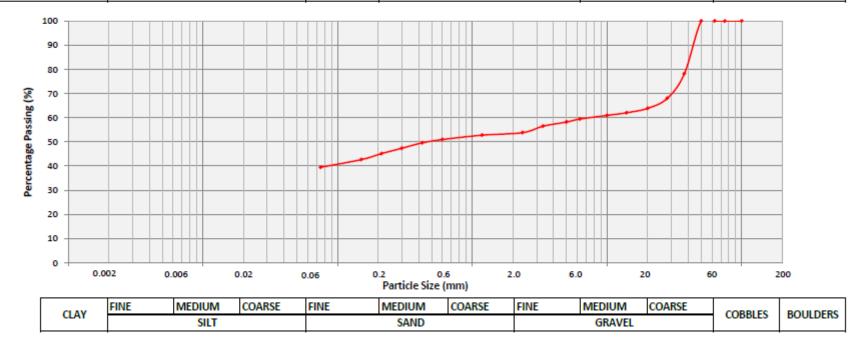


PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN06

NESHCONSULT ENGINEERING

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 06	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	CLAYEY SAND WITH GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	13.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1084


TESTED BY: MONICA

DATE REPORTED 19.12.2012

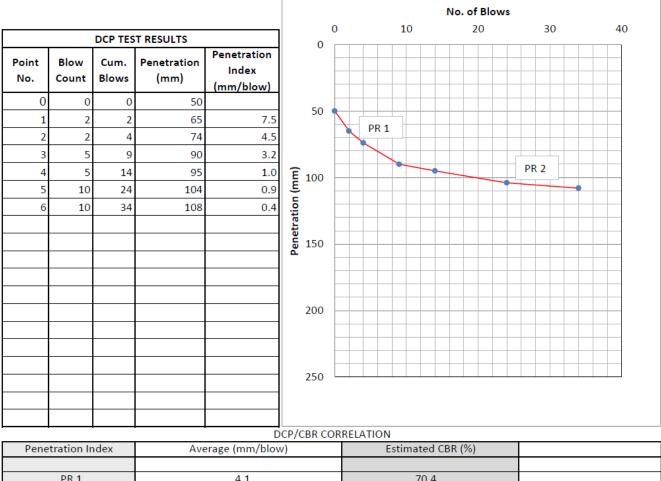
CHECKED: WK

TP6-7A

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN6(TP6-7A)MN7	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	Clayey SAND with Gravel	JOB REF:	GCL/NAS-355/13	DATE TESTED:	13.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1177

TP6-7B

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN6(TP6-7B)MN7	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	Silty SAND with Gravel	JOB REF:	GCL/NAS-355/13	DATE TESTED:	13.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1178



DCP - CBR CORRELATION

MN06

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 06	Date of Test:	03.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1084

4.1	70.4	
0.9	490.4	
	4.1 0.9	

Test By: LUCAS

Checked: <u>WK</u>

ANGLE POINT BEARING CAPACITY

MN06

CALCULATION OF SAFE BEARING CAPACITY: TP MN 06						
PROJECT:	PROPOSED I	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12
MATERIAL DESCRIPTION: CLAYEY SAND WITH GR			D WITH GRAV	/EL	Sample No.:	1084

LABORATORY TEST RESULTS

	I RESOLIS		
SHEARBOX		DENSITY	
$C(kN/m^2) =$	28	γ (kg/m ³) = 1912	
ø (°) =	23	$y (kN/m^3) = 18.76$	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
Whitlow. R	N _q = 8.66	
Basic Soil Mech.	N _y = 4.82	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 28 x 18.05) + (0.8 x 18.76 x 2.0 x 8.66) + (0.4 x 18.76 x 1.0 x 4.82)	953 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 953/3.0	318 kN/m ²

Calculations By: B.K.

Checked: WK

TP6-7A

CALCULATION OF SAFE BEARING CAPACITY: TP MN 04							
PROJECT:	PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU D				DATE RECEIVED:	06.03.2013	
DEPTH:	2.0M LOCAT		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03	
MATERIAL DESCRIPTION: Clayey SAND with Gravel				Sample No.:	1177		

LABORATORY TEST	RESULTS		
SHEARBOX		<u>DENSITY</u>	
$C(kN/m^2) =$	23	γ (kg/m ³) = 1710	
ø (°) =	21	γ (kN/m ³) = 16.78	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
	N _q = 7.07	
Whitlow. R Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 16.78 x 2.0 x 7.07) + (0.4 x 16.78 x 1.0 x 3.42)	686 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 686/3.0	229 kN/m ²

Calculations By: B.K.

Checked: <u>WK</u>

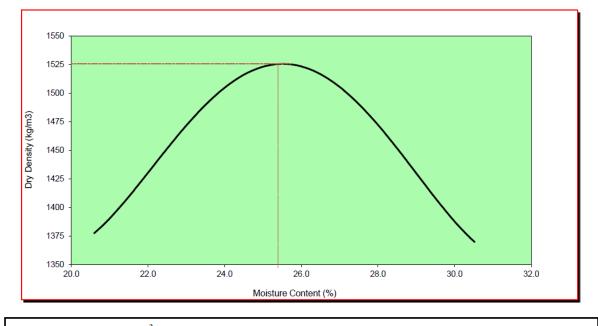
TP6-7B

CALCULATION OF SAFE BEARING CAPACITY: MN 6 (TP6-7B) MN7						
OJECT: P	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
PTH: 2	2.0M LOCATION:			EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESCRIPTION: Silty SAND with Gravel			Sample No.:	1178		
DEPTH: 2.0M LOCATION: EASTERN						

LABORATORY TEST R	ESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	28	γ (kg/m ³) = 1842
ø (°) =	23	γ (kN/m ³) = 18.07

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
	N _q = 8.66	
Whitlow. R Basic Soil Mech.	N _y = 4.82	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 28 x 18.05) + (0.8 x 18.07 x 2.0 x 8.66) + (0.4 x 18.07 x 1.0 x 4.82)	942 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 942/3.0	314 kN/m ²

Calculations By: B.K.


Checked: <u>WK</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN06

Project:	PROPOSED POWERLINE	LOCATION:	EASTERN		Depth:	2.0M	
Site:	NANYUKI-ISIOLO-MERU	Job Ref.:	GCL/TGA-342/	12	Sample No.:	1084	
Material Description:	CLAYEY SAND WITH GRAVEL	Sample Ref: TP MN 06			Date received:	09.12.2012	
Moisture Add	lition	100cc	150cc	200cc	250cc	300cc	350cc
Mass of Mould+Base+Soil		5656	5788	5892	5914	5863	5783
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1661	1793	1897	1919	1868	1788
Bulk Density	(Kgs/m ³)	1661	1793	1897	1919	1868	1788
Tin No.		G37	G14	G05	G16	G27	G49
Weight Wet S	ioil	210.2	237.1	234.5	240.9	237.2	258.7
Weight of Dry	/ Soil	174.3	193.2	187.9	190.3	184.7	198.2
Weight of Wa	ter	35.9	43.9	46.6	50.6	52.5	60.5
Moisture Cor	itent (%)	20.6	22.7	24.8	26.6	28.4	30.5

Maximum Dry Density (Kg/m³): <u>1525</u>

Optimum Moisture Content (%): 25.4%

Tested By: <u>STEVE</u>

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN06					
Depth	2.0m				
рН	7.98				
Chloride(%) mg/l	-				
Sulphate (mg/l)	0.001				

TP6-7A						
Depth	2.0m					
рН	7.81					
Chloride(%) mg/l	0.006					
Sulphate (mg/l)	0.025					

TP6-7B					
Depth	2.0m				
рН	7.20				
Chloride(%) mg/l	0.012				
Sulphate (mg/l)	0.033				

ANGLE POINT 6 LOG

		MN 06
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
	1.8	Dark Grey CLAY (Black Cotton Soil)
A	2.0	Light Grey Fragmented ROCK boulder and cobble fraction
V	2.0	

TEST POINT 6-7A, 6-7B LOGS

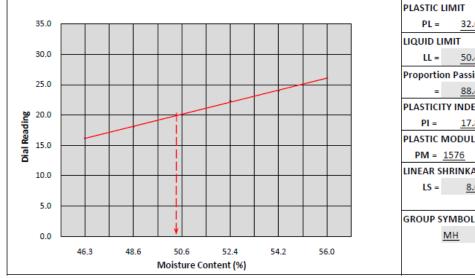
					TRIAL	PIT LOGS		
	O JECT:	NANY	UKI-ISIOLO-MERU POWERLINE	JOB REF:		GCL/NCE_356/03		
5	ITE:		NANYUKI-ISIOLO-MERU					
			(TP6-7A) MN7			6 (TP6-7B) MN7		
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION		
0.5			Greyish Brown Lean CLAY	x x x x	0.7	Brown Silty SAND		
1		1.2		X X Y				
1.5			Greyish Brown Clayey SAND with Gravel			Brown Silty SAND with Gravel		
2	. <u>^</u> ę.	2.0			2.0			

SEGMENT 6

ATTERBERG LIMITS BS 1377 - 2: 1990

MN07

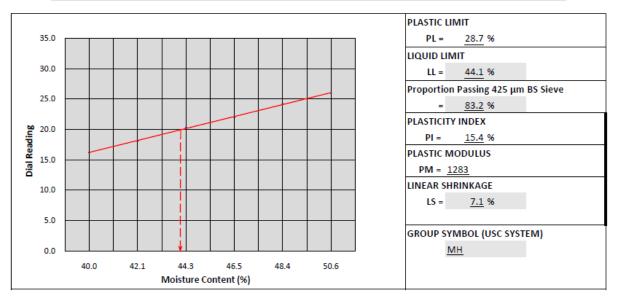
Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	CLAYEY SAND WITH GRAVEL	Job Reference:	GCL/TGA-342/12	Sample No.:	1085
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012


		LIQUID LIMIT					PLASTIC LIMIT			
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.3	18.2	20.1	22.0	24.1	26.2	-	-		
Tin No	17	36	11	22	41	87	51	10		
Mass of Wet Soil (g)	48.19	43.76	37.23	48.67	40.42	52.64	23.27	26.74	1	
Mass of Dry Soil (g)	32.67	29.25	24.54	31.71	26.01	33.40	16.92	19.42		
Mass of Moisture (g)	15.52	14.51	12.69	16.96	14.41	19.24	6.35	7.32		
Moisture Content (%)	47.5	49.6	51.7	53.5	55.4	57.6	37.5	37.7	37	

TP7-8A

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN7 (TP7-8A)MN8	Date Received:	06.03.2013
Material Description:	ELASTIC SILT with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1179
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	17.03.2013

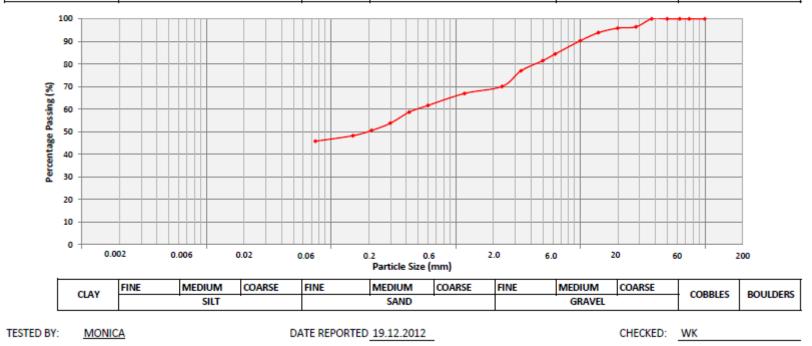
		LIQUID LIMIT					PL	1IT	
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.0	22.3	24.0	26.1	-	-	
Tin No	26	57	55	2	34	63	22	3	
Mass of Wet Soil (g)	36.82	55.03	50.35	43.30	54.14	59.61	18.89	25.62	
Mass of Dry Soil (g)	25.17	37.03	33.43	28.41	35.11	38.21	14.26	19.31	
Mass of Moisture (g)	11.65	18.00	16.92	14.89	19.03	21.40	4.63	6.31	
Moisture Content (%)	46.3	48.6	50.6	52.4	54.2	56.0	32.5	32.7	32.0



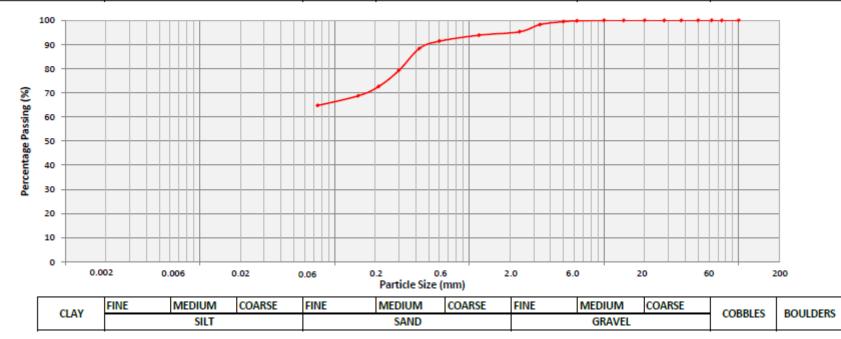
1		
PLASTIC LI	МІТ	
PL =	32.6 %	
LIQUID LIN	11T	_
LL =	50.4 %	
Proportion	Passing 425 µm	BS Sieve
=	<u>88.4</u> %	
PLASTICITY	INDEX	
PI =	<u>17.8</u> %	
PLASTIC M	ODULUS	
PM = 1	576	
LINEAR SH	RINKAGE	
LS =	<u>8.6</u> %	
GROUP SY	MBOL (USC SYST	EM)
N	<u>1H</u>	

TP7-8B

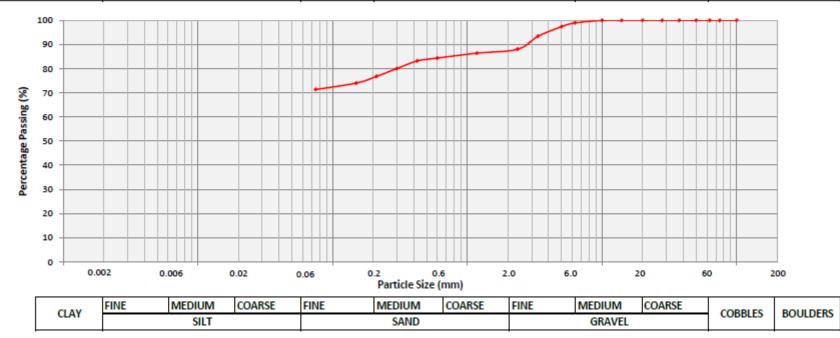
Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN7 (TP7-8B)MN8	Date Received:	06.03.2013
Material Description:	ELASTIC SILT with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1180
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	17.03.2013


		LIQUID LIMIT						PLASTIC LIMIT		
Test No.		1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading	(mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.3	22.0	24.2	26.0	-	-	
Tin No		8	57	49	26	34	21	21	10	
Mass of Wet Soil	(g)	30.30	39.89	44.79	53.36	47.73	59.52	20.90	25.87	
Mass of Dry Soil	(g)	21.64	28.07	31.05	36.42	32.16	39.52	16.23	20.12	
Mass of Moisture	(g)	8.66	11.82	13.74	16.94	15.57	20.00	4.67	5.75	
Moisture Content	(%)	40.0	42.1	44.3	46.5	48.4	50.6	28.8	28.6	28

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN07

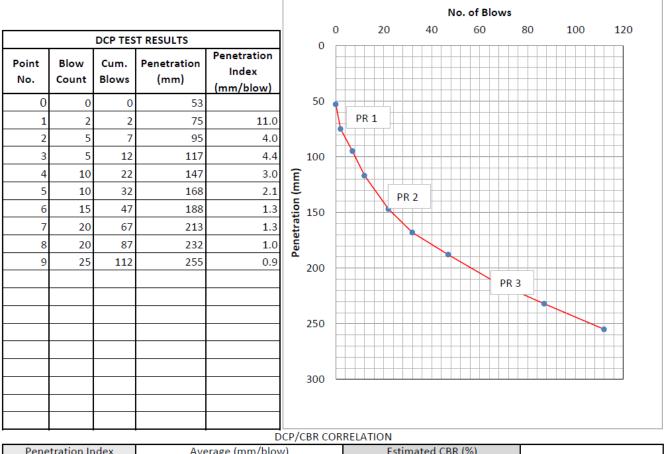
PROJECT:	ECT: PROPOSED POWERLINE		MN 07	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	CLAYEY SAND WITH GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	13.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1085


TP7-8A

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN7(TP7-8A)MN8	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	ELASTIC SILT with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	13.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1179

TP7-8B

PROJECT: NANYUKI ISIOLO MERU POWERLINE		LOCATION	MN7(TP7-8B)MN8	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	ELASTIC SILT with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1180



DCP - CBR CORRELATION

MN07

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 07	Date of Test:	03.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1085
	•		•	-	-	-	

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	11	19.9	
PR 2	4.2	68.3	
PR 3	1.2	339.4	

Test By: LUCAS

ANGLE POINT BEARING CAPACITY

MN07

CALCULATION OF SAFE BEARING CAPACITY: TP MN 07							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012	
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DESCRIPTION: CLAYEY SAN			D WITH GRAV	VEL	Sample No.:	1085	

LABORATORY TES	T RESULTS				
SHEARBOX		DENSITY			
$C(kN/m^2) =$	28	y (kg/m ³) =	1939		
ø (°) =	23	y (kN/m ³) =	19.02		

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
Whitlow. R	N _q = 8.66	
Basic Soil Mech.	N _y = 4.82	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 28 x 18.05) + (0.8 x 19.02 x 2.0 x 8.66) + (0.4 x 19.02 x 1.0 x 4.82)	957 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 957/3.0	319 kN/m ²

Calculations By: B.K.

TP7-8A

CALCULATION OF SAFE BEARING CAPACITY: MN7 (TP7-8A) MN8							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013	
DEPTH:	2.0M	2.0M		EASTERN	JOB No.:	GCL/NC_356/03	
MATERIAL DESCRIPTION: Elastic SILT with		n Sand		Sample No.:	1179		

LABORATORY TEST R	ESULTS		
SHEARBOX		DENSITY	
$C(kN/m^2) =$	28	γ (kg/m³) = 1912	
ø (°) =	23	γ (kN/m ³) = 18.76	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
	N _q = 8.66	
Whitlow. R Basic Soil Mech.	N _γ = 4.82	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 28 x 18.05) + (0.8 x 18.76 x 2.0 x 8.66) + (0.4 x 18.76 x 1.0 x 4.82)	953 kN/m²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 953/3.0	318 kN/m ²

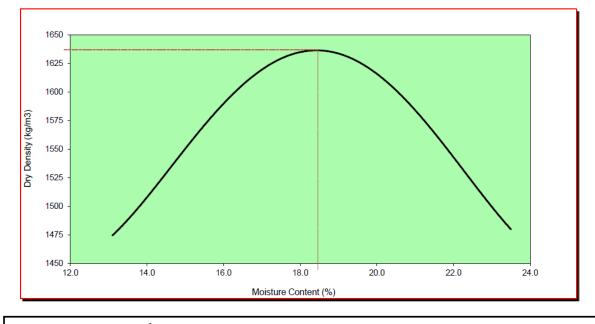
Calculations By: B.K.

TP7-8B

CALCULATION OF SAFE BEARING CAPACITY: MN7 (TP7-8B) MN8							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013	
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03	
MATERIAL DESCRIPTION: Elastic SILT with		Sand		Sample No.:	1085		

LABORATORY TES	T RESULTS			
SHEARBOX		DENSITY		
$C(kN/m^2) =$	28	γ (kg/m³) =	1939	
ø (°) =	23	γ (kN/m³) =	19.02	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
	N _q = 8.66	
Whitlow. R Basic Soil Mech.	N _y = 4.82	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 28 x 18.05) + (0.8 x 19.02 x 2.0 x 8.66) + (0.4 x 19.02 x 1.0 x 4.82)	957 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 957/3.0	319 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN07

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M	
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1085	
Material Description:	CLAYEY SAND WITH GRAVEL	YEY SAND WITH GRAVEL		Sample Ref: TP MN 07			09.12.2012	
Moisture Ado	dition	100cc	150cc	200cc	250cc	300cc	350cc	
Mass of Mou	ld+Base+Soil	5662	5792	5898	5944	5896	5823	
Mass of Mou	ld+Base	3995	3995	3995	3995	3995	3995	
Mass of Com	pacted Soil	1667	1797	1903	1949	1901	1828	
Bulk Density	(Kgs/m ³)	1667	1797	1903	1949	1901	1828	
Tin No.		G29	G43	G21	G12	G35	G07	
Weight Wet S	Soil	272.0	272.3	246.0	283.1	296.6	312.7	
Weight of Dry	y Soil	240.5	236.4	209.7	236.9	244.3	253.2	
Weight of Wa	ater	31.5	35.9	36.3	46.2	52.3	59.5	
Moisture Cor	ntent (%)	13.1	15.2	17.3	19.5	21.4	23.5	

Maximum Dry Density (Kg/m³): <u>1635</u>

Optimum Moisture Content (%): <u>18.6%</u>

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN07					
Depth	2.0m				
рН	7.45				
Chloride(%) mg/l	0.32				
Sulphate (mg/l)	0.002				

T	TP7-8A						
Depth	2.0m						
рН	6.92						
Chloride(%) mg/l	0.08						
Sulphate (mg/l)	0.036						

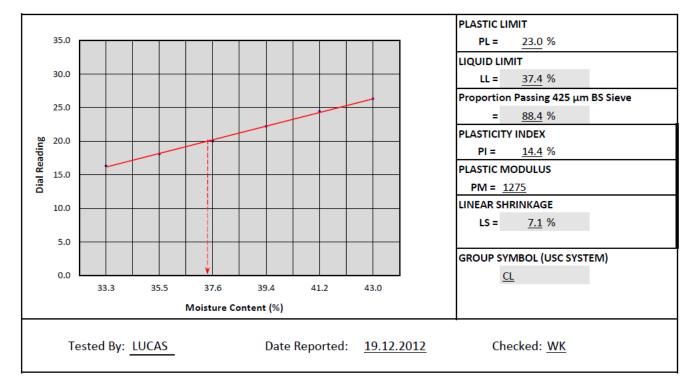
TP7-8B					
Depth	2.0m				
рН	7.98				
Chloride(%) mg/l	0.012				
Sulphate (mg/l)	0.028				

ANGLE POINT 7 LOG

PR	OJECT:	N AN	YUKI-ISIOLO-MERU POWERLINE				
S	ITE:	N ANYUKI-ISIOLO-MERU					
		MN 07					
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION				
0.5			Brownish Red Elastic SILT with Sand				
1.5							
2	\sim	2.0					
2.5							

TEST POINT 7-8A, 7-8B LOGS

DATE:	23 - 28.02.2013	PR	OJECT:	NAN	YUKI-ISIOLO-MERU POWERLINE		
LOGGED BY:	STEVE	5	SITE:		NANYUKI-ISIOLO-MERU		
	MN7 (TP7-8A) MN8			MN7 (TP7-8B) MN8			
LEGEND DEPT		SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION		
	1.2 Light Grey Elastic SILT 2.0	0.5 0.5 1.5 2.5		2.0	Dark Grey CLAY (Black Cotton Soil) Grey Elastic SILT with Sand		

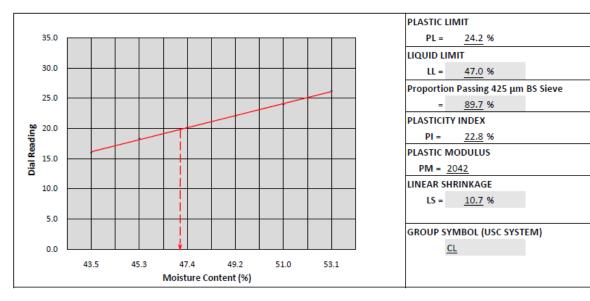

SEGMENT 7

ATTERBERG LIMITS BS 1377 - 2: 1990

MN08

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1086
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012

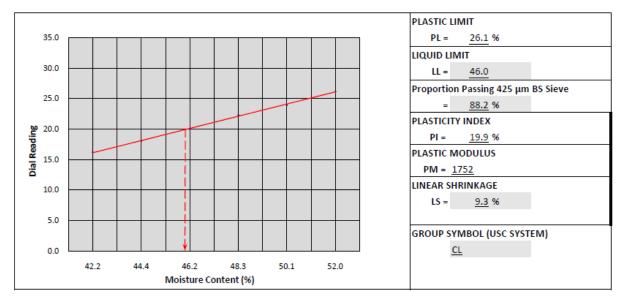
		LIQUID LIMIT						PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.3	18.1	20.0	22.2	24.4	26.3	-	-		
Tin No	56	7	28	29	36	41	52	17		
Mass of Wet Soil (g)	39.62	48.97	45.76	54.38	39.56	48.82	14.00	17.52		
Mass of Dry Soil (g)	29.72	36.14	33.25	39.01	28.02	34.14	11.39	14.24		
Mass of Moisture (g)	9.90	12.83	12.51	15.37	11.54	14.68	2.61	3.28		
Moisture Content (%)	33.3	35.5	37.6	39.4	41.2	43.0	22.9	23.0	23	


TP8-9A

NESHCONSULT ENGINEERING

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN8(TP8-9A)MN9	Date Received:	06.03.2013
Material Description:	LEAN CLAY with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1181
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	17.03.2013

Г

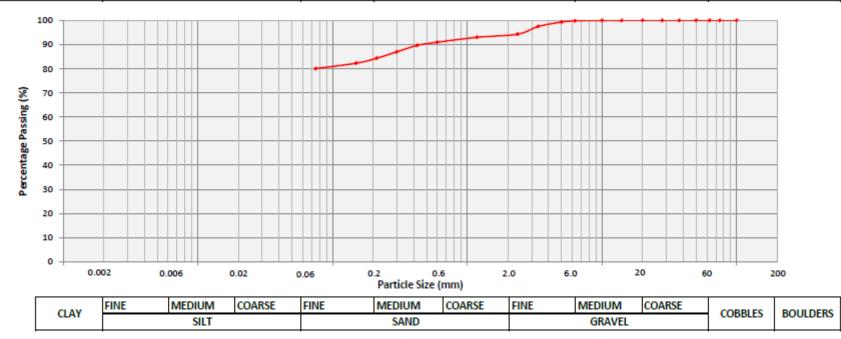

		LIQUID LIMIT						PLASTIC LIMIT		
Test No.		1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (r	nm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (n	nm)	16.0	18.3	20.2	22.1	24.0	26.2	-	-]
Tin No		14	12	23	19	33	26	15	11	
Mass of Wet Soil ((g)	52.35	40.13	44.83	59.59	49.45	40.59	13.35	16.94	
Mass of Dry Soil	(g)	36.48	27.62	30.41	39.94	32.75	26.51	10.75	13.63	
Mass of Moisture	(g)	15.87	12.51	14.42	19.65	16.70	14.08	2.60	3.31	
Moisture Content (%)	43.5	45.3	47.4	49.2	51.0	53.1	24.2	24.3	24

TP8-9B

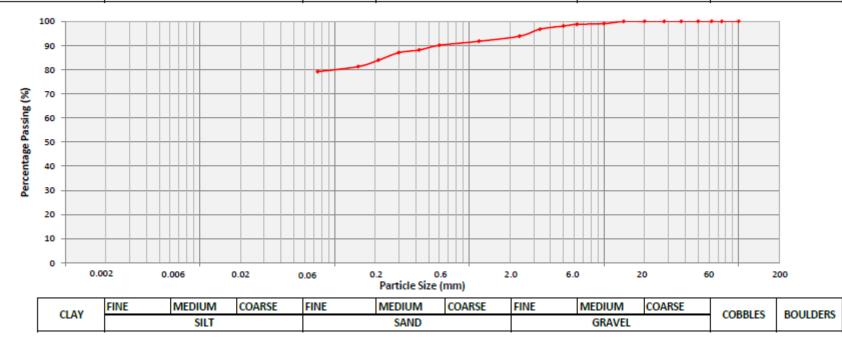
Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN8 (TP8-9B)MN9	Date Received:	06.03.2013
Material Description:	LEAN CLAY with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1236
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	20.03.2013

			LIQUID	LIMIT			PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.0	22.3	24.0	26.2	-	-]
Tin No	22	32	26	17	49	58	64	50	
Mass of Wet Soil (g)	32.95	39.36	37.15	43.96	45.74	49.38	23.30	25.64]
Mass of Dry Soil (g)	23.17	27.26	25.41	29.64	30.47	32.49	18.48	20.32	
Mass of Moisture (g)	9.78	12.10	11.74	14.32	15.27	16.89	4.82	5.32	
Moisture Content (%)	42.2	44.4	46.2	48.3	50.1	52.0	26.1	26.2	

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN08

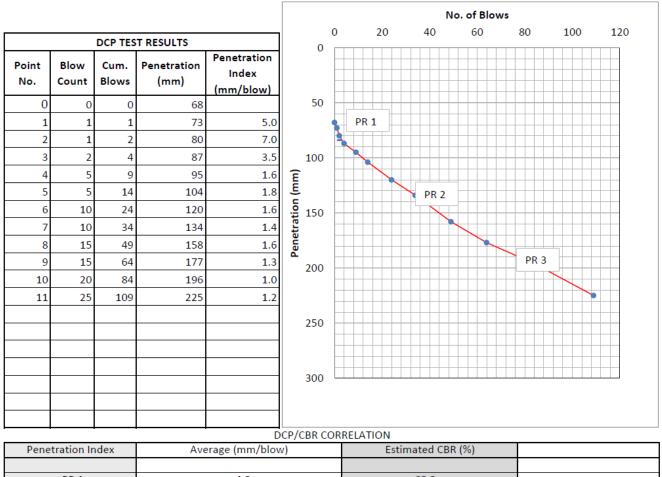
PROJECT:	PROPOSED POWERLINE	LOCATION	MN 08	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	13.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1086


TP8-9A

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN8(TP8-9)MN9	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	LEAN CLAY with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1181

TP8-9B

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN8(TP8-9B)MN9	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	LEAN CLAY with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1236



DCP - CBR CORRELATION

MN08

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 08	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1086

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	4.2	68.3	
PR 2	1.4	278.6	
PR 3	1.1	379.3	

Test By: LUCAS

ANGLE POINT BEARING CAPACITY

MN08

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 08								
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012			
DEPTH:	: 2.0M LOCATION:			EASTERN	JOB No.:	GCL/TGA_342/12			
MATERIAL DESCRIPTION: SANDY LEAN CLAY					Sample No.:	1086			

LABORATORY TEST	T RESULTS			
SHEARBOX		DENSITY		
$C(kN/m^2) =$	23	γ (kg/m³) =	1816	
ø (°) =	21	γ (kN/m ³) =	17.81	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R	$N_q = 7.07$	
Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 17.81 x 2.0 x 7.07) + (0.4 x 17.81 x 1.0 x 3.42)	699 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 699/3.0	233 kN/m ²

Calculations By: B.K.

Checked: WK

TP8-9A

CALCULATION OF SAFE BEARING CAPACITY: MN8 (TP8-9A) MN9									
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013			
DEPTH:	2.0M	2.0M LOCATION: EASTERN			JOB No.:	GCL/NC_356/03			
MATERIAL DESCRIPTION: Lean CLAY with Sand			Sample No.:	1181					

LABORATORY T	EST RESULTS			
SHEARBOX		DENSITY		
C(kN/m ²)	= 23	γ (kg/m³) =	1816	
ø (°) :	= 21	γ (kN/m³) =	17.81	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
	N _q = 7.07	
Whitlow. R Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 17.81 x 2.0 x 7.07) + (0.4 x 17.81 x 1.0 x 3.42)	699 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 699/3.0	233 kN/m ²

Calculations By: B.K.

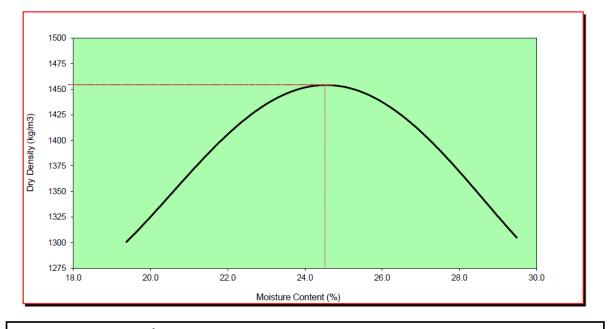
TP8-9B

CALCULATION OF SAFE BEARING CAPACITY: MN8 (TP8-9B) MN9								
PROJECT:	PROPOSED	ROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU DATE RECEIVED: 06.03.2013						
DEPTH:	DEPTH: 2.0M LOCATION: EASTERN					GCL/NC_356/03		
MATERIAL DESC	ATERIAL DESCRIPTION: Lean CLAY with Sand Sample No.: 1236							

.

LABORATORY TEST F	RESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	23	γ (kg/m ³) = 1784
ø (°) =	20	γ (kN/m ³) = 17.50

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
	N _q = 6.40	
Whitlow. R Basic Soil Mech.	N _γ = 2.87	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 17.50 x 2.0 x 6.40) + (0.4 x 17.50 x 1.0 x 2.87)	643 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 643/3.0	214 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN08

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M	
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1086	
Material Description:	SANDY LEAN CLAY		Sample Ref:	TP MN 08		Date received:	09.12.2012	
Moisture Ado	dition	250cc	300cc	350cc	400cc	450cc	500cc	
Mass of Mou	ld+Base+Soil	5547	5676	5776	5816	5766	5685	
Mass of Mou	ld+Base	3995	3995	3995	3995	3995	3995	
Mass of Com	pacted Soil	1552	1681	1781	1821	1771	1690	
Bulk Density	(Kgs/m ³)	1552	1681	1781	1821	1771	1690	
Tin No.		G25	G15	G19	G29	G33	G39	
Weight Wet S	Soil	228.0	210.0	273.0	265.0	260.0	281.0	
Weight of Dr	y Soil	191.0	173.0	221.0	211.0	204.0	217.0	
Weight of Wa	ater	37.0	37.0	52.0	54.0	56.0	64.0	
Moisture Cor	ntent (%)	19.4	21.4	23.5	25.6	27.5	29.5	

Maximum Dry Density (Kg/m³): <u>1455</u>

Optimum Moisture Content (%): 24.8%

T

 STEVE
 Date Reported: 25.01.2013
 Checked By: WK

Tested By: STEVE

Г

CHEMICAL ANALYSIS

Angle Point MN08					
Depth	2.0m				
рН	6.93				
Chloride(%) mg/l					
Sulphate (mg/l)					

TP8-9A					
Depth	2.0m				
рН	7.45				
Chloride(%) mg/l	0.008				
Sulphate (mg/l)	0.017				

TP	TP8-9B					
Depth	2.0m					
рН	8.12					
Chloride(%) mg/l	0.018					
Sulphate (mg/l)	0.033					

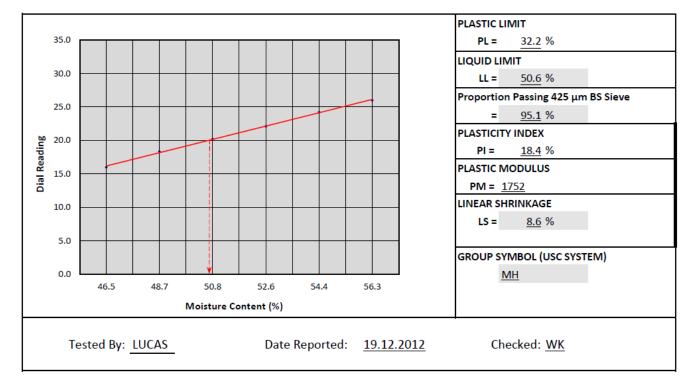
ANGLE POINT 8 LOG

JOB REF:		GCL/NCE_342/12
		MN 08
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	0.8	Dark Grey CLAY (Black Cotton Soil)
Δ	2.0	Light Grey Elastic SILT with Sand
V		

TEST POINT 8-9A, 8-9B LOGS

(TP8-9A erroneously labelled as TP7-8A in below figure)

DAT	E:	23 - 28.02.2013	PR	OJECT:	NANY	/UKI-ISIOLO-MERU POWERLINE	
LOGGED	OBY:	STEVE	5	SITE:		NANYUKI-ISIOLO-MERU	
		7 (TP7-8A) MN8	MN8 (TP8-9B) MN9				
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	
	1.2	Dark Grey CLAY (Black Cotton Soil)	0.5	× × × × × × × × × × × × × × × × × × ×		Brownish Red Elastic SILT	
-x - x - x - x - x - x - x - x - x - x -	2.0	Light Grey Elastic SILT	1.5	× · · · · · · · · · · · · · · · · · · ·	2.0		
V			2.5				


SEGMENT 8

ATTERBERG LIMITS BS 1377 - 2: 1990

MN09

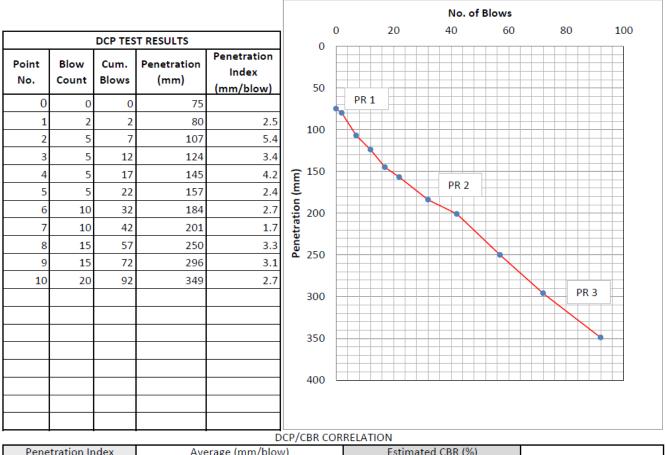
Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY ELASTIC SILT	Job Reference:	GCL/TGA-342/12	Sample No.:	1093
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012

		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.0	18.3	20.2	22.1	24.2	26.0	-	-	
Tin No	14	12	23	19	33	26	15	11	
Mass of Wet Soil (g)	40.01	39.29	43.84	47.40	39.36	48.03	19.18	23.29	
Mass of Dry Soil (g)	27.31	26.42	29.08	31.06	25.49	30.73	14.52	17.61	
Mass of Moisture (g)	12.70	12.87	14.76	16.34	13.87	17.30	4.66	5.68	
Moisture Content (%)	46.5	48.7	50.8	52.6	54.4	56.3	32.1	32.3	32

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN09

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 09	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY ELASTIC SILT	JOB REF:	GCL/TGA-342/12	DATE TESTED:	13.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1087



DCP - CBR CORRELATION

MN09

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 09	Date of Test:	02.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1087

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	4.2	68.3	
PR 2	2.4	139.7	
PR 3	2.3	147.6	

Test By: LUCAS

Checked: WK

ANGLE POINT BEARING CAPACITY

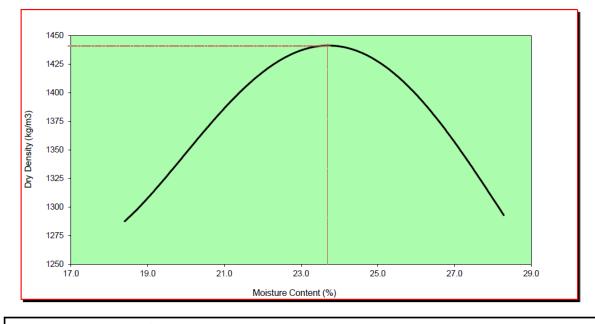
MN09

CALCULATION OF SAFE BEARING CAPACITY: TP MN 09							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012	
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DE	SCRIPTION:	SANDY ELAS	TIC SILT		Sample No.:	1087	

LABORATORY TES	T RESULTS			
SHEARBOX		DENSITY		
$C(kN/m^2) =$	23	γ (kg/m ³) =	1784	
ø (°) =	20	y (kN/m ³) =	17.50	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
Whitlow. R	$N_q = 6.40$	
Basic Soil Mech.	N _y = 2.87	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 17.50 x 2.0 x 6.40) + (0.4 x 17.50 x 1.0 x 2.87)	643 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 643/3.0	214 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 – 4: 1990</u>

MN09

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1087
Material Description:	SANDY ELASTIC SILT	Sample Ref:	TP MN 09		Date received:	09.12.2012	
Moisture Add	dition	200cc	250cc	300cc	350cc	400cc	450cc
Mass of Mould+Base+Soil		5519	5650	5753	5787	5738	5654
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1524	1655	1758	1792	1743	1659
Bulk Density	(Kgs/m³)	1524	1655	1758	1792	1743	1659
Tin No.		G06	G19	G21	G37	G16	G28
Weight Wet S	Soil	204.0	219.0	220.2	243.4	233.6	248.5
Weight of Dry	/ Soil	172.3	181.6	179.3	195.2	184.7	193.7
Weight of Wa	iter	31.7	37.4	40.9	48.2	48.9	54.8
Moisture Cor	ntent (%)	18.4	20.6	22.8	24.7	26.5	28.3

Maximum Dry Density (Kg/m³): <u>1443</u>

Optimum Moisture Content (%): 23.6%

Tested By: STEVE

Г

Date Reported: 25.01.2013

Checked By: WK

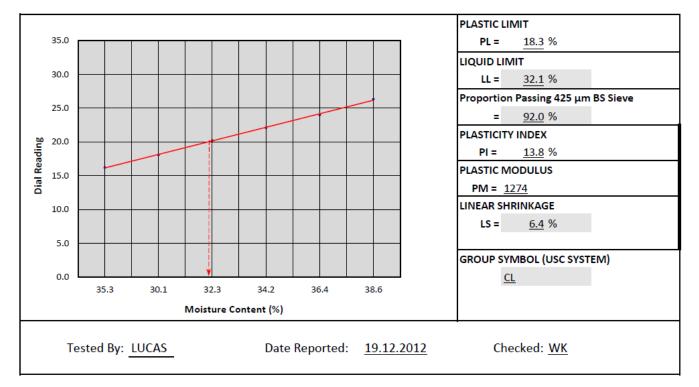
٦

CHEMICAL ANALYSIS

Angle Point MN09						
Depth	2.0m					
рН	7.72					
Chloride(%) mg/l	0.39					
Sulphate (mg/l)	0.001					

ANGLE POINT 9 LOG

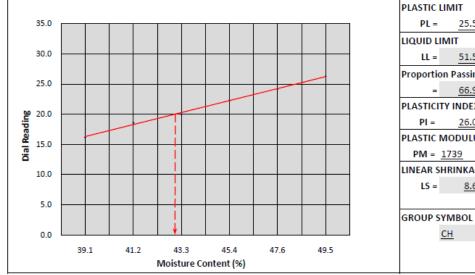
DATE	6	03.09.12.2012
LOGGED BY:		LUCAS
		MN 09
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
	0.8	Dark Grey CLAY (Black Cotton Soil)
~	2.0	Greyish Brown SILT with Sand
V		


SEGMENT 9

ATTERBERG LIMITS BS 1377 - 2: 1990

MN10

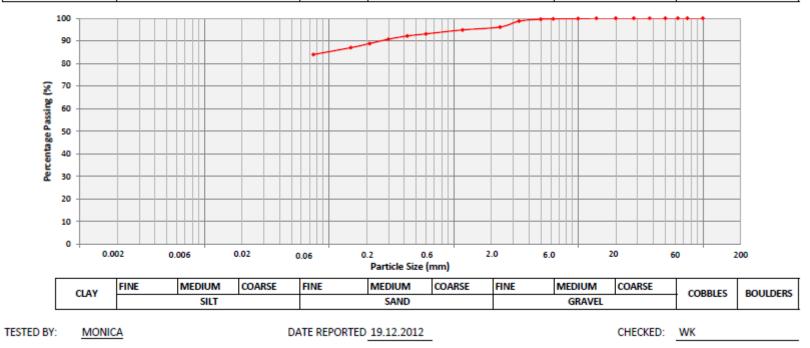
Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1088
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012


		LIQUID LIMIT				PLASTIC LIMIT			
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.2	22.1	24.0	26.3	-	-	
Tin No	41	12	23	17	21	27	55	10	
Mass of Wet Soil (g)	41.85	48.18	44.99	39.20	49.34	46.21	25.18	20.69	
Mass of Dry Soil (g)	30.92	37.03	34.00	29.21	36.17	33.34	21.30	17.49	
Mass of Moisture (g)	10.93	11.15	10.99	9.99	13.17	12.87	3.88	3.20	
Moisture Content (%)	35.3	30.1	32.3	34.2	36.4	38.6	18.2	18.3	18

TP10-11

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN10 (TP10-11)MN11	Date Received:	06.03.2013
Material Description:	FAT CLAY with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1182
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	17.03.2013

		LIQUID LIMIT						PLASTIC LIMIT		
Test No.	1	L	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (m	m)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (m	n) 1	16.2	18.6	20.0	22.3	24.2	26.3	-	-	
Tin No	14	4	25	32	51	12	50	40	37	
Mass of Wet Soil (g) 32	2.94	45.38	41.42	50.32	43.42	50.38	23.35	25.80	
Mass of Dry Soil (g) 23	3.68	32.14	28.91	34.61	29.42	33.70	18.62	20.54	
Mass of Moisture (g) 9	9.26	13.24	12.51	15.71	14.00	16.68	4.73	5.26	
Moisture Content (%	1	39.1	41.2	43.3	45.4	47.6	49.5	25.4	25.6	2



PLASTIC LIMIT							
PL = <u>25.5</u> %							
LIQUID LIMIT	LIQUID LIMIT						
LL = <u>51.5</u> %							
Proportion Passing 425 µm BS Sieve	Proportion Passing 425 μm BS Sieve						
= <u>66.9</u> %							
PLASTICITY INDEX	PLASTICITY INDEX						
PI = <u>26.0</u> %							
PLASTIC MODULUS							
PM = <u>1739</u>							
LINEAR SHRINKAGE							
LS = <u>8.6</u> %							
GROUP SYMBOL (USC SYSTEM)							
СН							

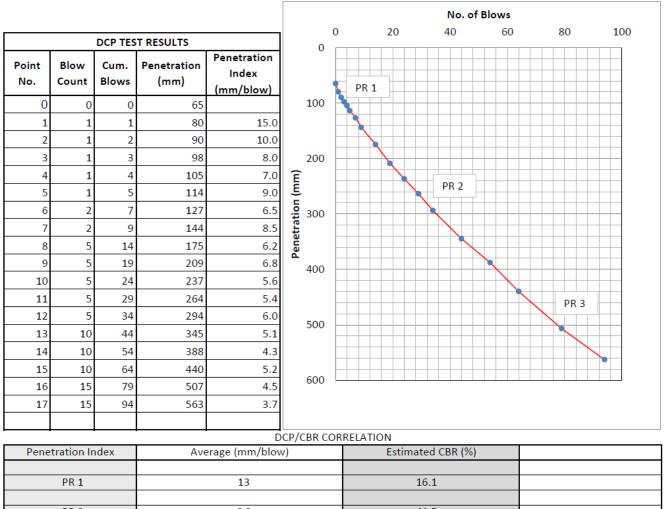
PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN10

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 10	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	13.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1088

TP10-11

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN10(TP10-11)MN11	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	FAT CLAY with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1182



DCP - CBR CORRELATION

MN10

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 10	Date of Test:	02.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1088

PR 2	6.2	41.5	
PR 3	4.2	68.3	

Test By: LUCAS

Checked: <u>WK</u>

ANGLE POINT BEARING CAPACITY

MN10

		CALCU	LATION OF	SAFE BEARING CAPACI	TY: TP MN 10	
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12
MATERIAL DE	MATERIAL DESCRIPTION: SANDY LEAN CLAY Sample No.: 1088			1088		

LABORATORY TEST RESULTSSHEARBOXDENSITY $C(kN/m^2) = 23$ $\gamma (kg/m^3) = 1911$ $\phi (°) = 21$ $\gamma (kN/m^3) = 18.75$

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R	N _q = 7.07	
Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 18.75 x 2.0 x 7.07) + (0.4 x 18.75 x 1.0 x 3.42)	711 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 711/3.0	237 kN/m ²

Calculations By: B.K.

Checked: WK

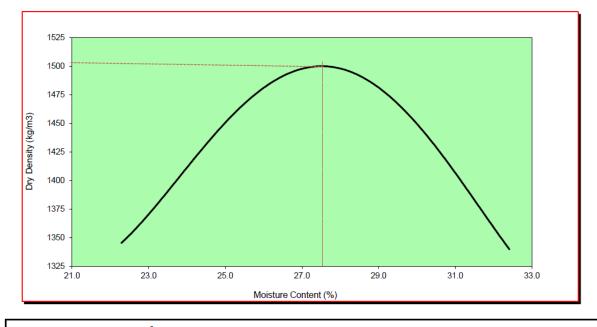
TP10-11

	C		F SAFE BEA	RING CAPACITY: MN10	(TP10-11) MN11	
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
DEPTH:	2.0M LOCATION		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESCRIPTION: Fat CLAY with Sand			nd		Sample No.:	1182

LABORATORY TEST R	ESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	23	γ (kg/m ³) = 1911
ø (°) =	21	γ (kN/m ³) = 18.75

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
	N _q = 7.07	
Whitlow. R Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 18.75 x 2.0 x 7.07) + (0.4 x 18.75 x 1.0 x 3.42)	711 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 711/3.0	237 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN10

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1088
Material Description:	Naterial Jescription: SANDY LEAN CLAY		Sample Ref: TP MN 10		Date received:	09.12.2012	
Moisture Ado	dition	150cc	200cc	250cc	300cc	350cc	400cc
Mass of Mou	ld+Base+Soil	5640	5779	5885	5910	5856	5769
Mass of Mould+Base 399		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil 1645		1645	1784	1890	1915	1861	1774
Bulk Density	(Kgs/m³)	1645	1784	1890	1915	1861	1774
Tin No.		G23	G41	G61	G01	G20	G47
Weight Wet S	Soil	250.2	246.8	267.8	279.6	296.3	284.3
Weight of Dry Soil 204.6		204.6	198.2	211.5	217.1	226.9	214.7
Weight of Water 45.6		48.6	56.3	62.5	69.4	<mark>69.6</mark>	
Moisture Content (%) 22.3		24.5	26.6	28.8	30.6	32.4	

Maximum Dry Density (Kg/m³): <u>1500</u>

Optimum Moisture Content (%): 27.4%

Tested By: STEVE

Г

Date Reported: 25.01.2013

Checked By: WK

٦

CHEMICAL ANALYSIS

Angle Point MN10		
Depth	2.0m	
рН	8.16	
Chloride(%) mg/l	0.16	
Sulphate (mg/l)	0.002	

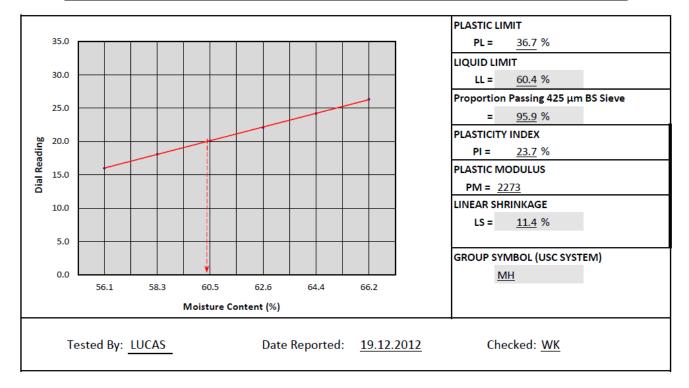
TP1	TP10-11		
Depth	2.0m		
рН	7.34		
Chloride(%) mg/l	0.014		
Sulphate (mg/l)	0.035		

ANGLE POINT 10 LOG

PR	OJECT:	N AN	YUKI-ISIOLO-MERU POWERLINE		
S	SITE:		N ANYUKI-ISIOLO-MERU		
			MN 10		
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION		
0		0.6	Dark Grey CLAY (Black Cotton Soil)		
1					
1.5			Light Grey Elastic SILT with Sand		
2	A.	2.0			
2.5	V				

TEST POINT 10-11 LOG

DATE	<u>]</u> :	23 - 28.02.2013	
LOGGED	BY:	STEVE	
	MN10	(TP10-11) MN11	
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	
	1.0	Light Brown Sandy CLAY	
	2.0	Brown CLAY with Sand	
V			


SEGMENT 10

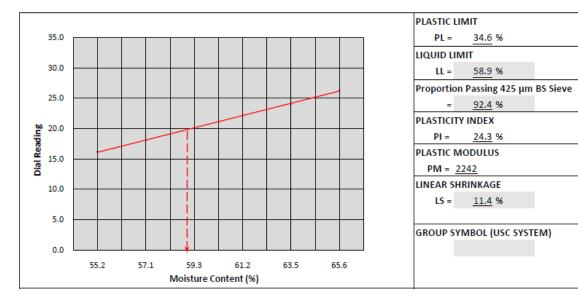
ATTERBERG LIMITS BS 1377 - 2: 1990

MN11

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY ELASTIC SILT	Job Reference:	GCL/TGA-342/12	Sample No.:	1089
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012

		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.0	18.1	20.1	22.1	24.2	26.3	-	-	
Tin No	52	6	54	48	10	23	7	11	
Mass of Wet Soil (g)	42.65	54.96	63.33	34.65	48.20	55.51	31.34	24.73	1
Mass of Dry Soil (g)	27.32	34.72	39.46	21.31	29.32	33.40	22.94	18.08	
Mass of Moisture (g)	15.33	20.24	23.87	13.34	18.88	22.11	8.40	6.65	
Moisture Content (%)	56.1	58.3	60.5	62.6	64.4	66.2	36.6	36.8	36

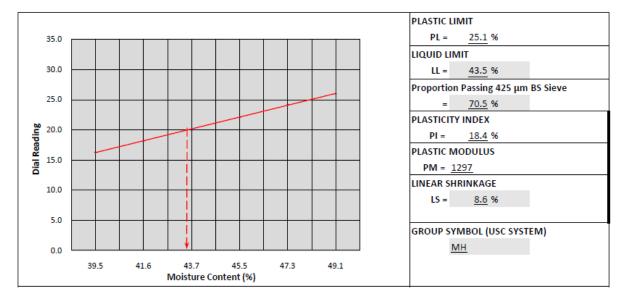
TP11-12A


NESHCONSULT ENGINEERING

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN11 (TP11-12A)MN12	Date Received:	06.03.2013
Material Description:	ELASTIC SILT with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1183
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	18.03.2013

٦

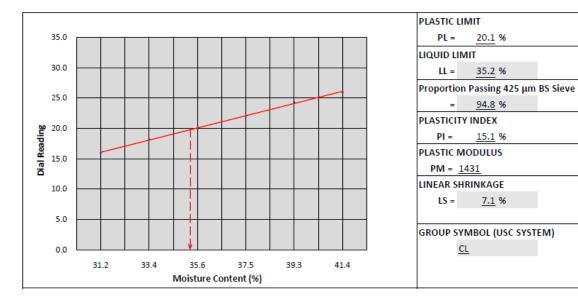
Г


			LIQUID	LIMIT			PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.0	22.2	24.1	26.3	-	-	
-	_								
Tin No	54	45	22	6	37	24	30	29	
Mass of Wet Soil (g)	36.77	43.06	34.09	45.46	42.82	44.93	23.27	29.82	
Mass of Dry Soil (g)	23.69	27.41	21.40	28.20	26.19	27.13	17.29	22.14	
Mass of Moisture (g)	13.08	15.65	12.69	17.26	16.63	17.80	5.98	7.68	
Moisture Content (%)	55.2	57.1	59.3	61.2	63.5	65.6	34.6	34.7	

TP11-12B

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN11 (TP11-12B)MN12	Date Received:	06.03.2013
Material Description:	ELASTIC SILT with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1184
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	18.03.2013

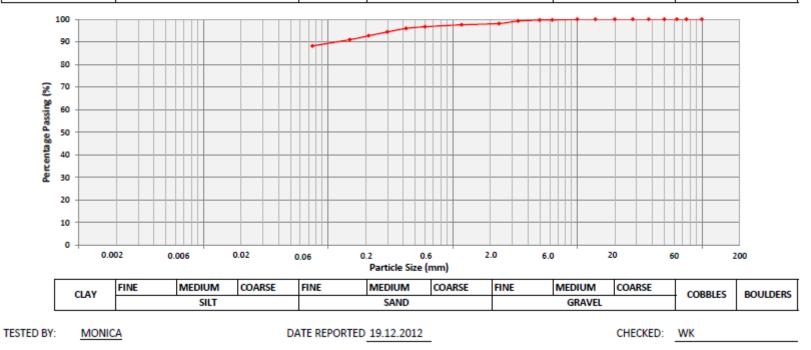
		LIQUID LIMIT					PL	PLASTIC LIM		
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.3	18.2	20.0	22.1	24.2	26.0	-	-]	
Tin No	77	58	21	6	37	24	16	36		
Mass of Wet Soil (g)	43.36	35.64	43.52	38.54	41.69	47.92	16.36	19.96	1	
Mass of Dry Soil (g)	31.08	25.17	30.29	26.49	28.30	32.14	13.09	15.94		
Mass of Moisture (g)	12.28	10.47	13.23	12.05	13.39	15.78	3.27	4.02		
Moisture Content (%)	39.5	41.6	43.7	45.5	47.3	49.1	25.0	25.2		



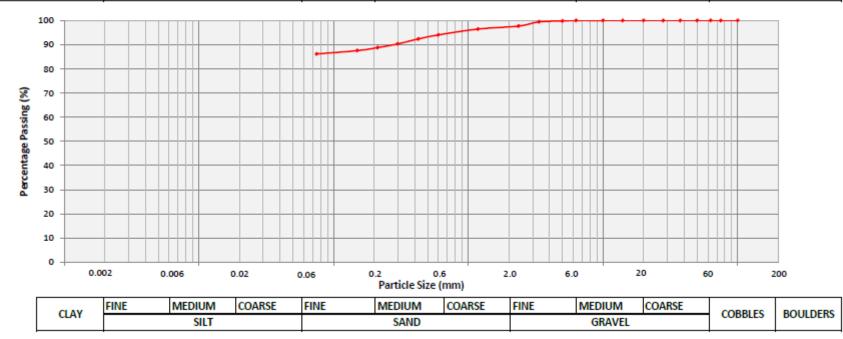
Tested By: STEVE	Date Reported:	22.03.2013	Checked:
Tested by. <u>STEVE</u>	Date Reported.	22.03.2015	

TP11-12C

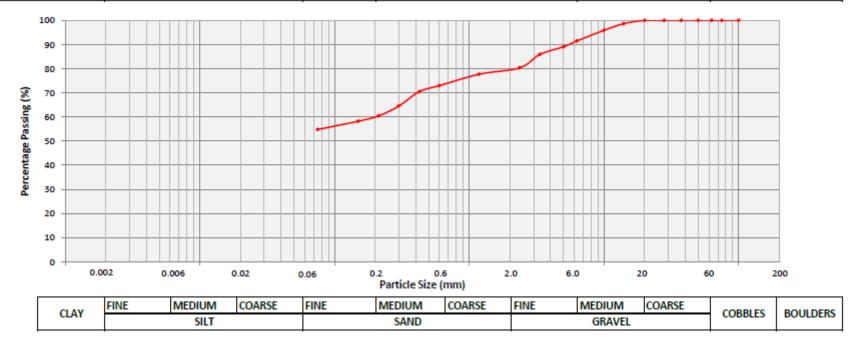
Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN11 (TP11-12C)MN12	Date Received:	06.03.2013
Material Description:	LEAN CLAY with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1185
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	18.03.2013


		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.0	18.2	20.0	22.1	24.3	26.0	-	-	
Tin No	8	58	23	65	20	32	42	11	
Mass of Wet Soil (g)	38.59	42.69	46.60	51.34	40.61	51.54	12.76	15.01	
Mass of Dry Soil (g)	29.41	32.00	34.37	37.34	29.15	36.45	10.63	12.49	1
Mass of Moisture (g)	9.18	10.69	12.23	14.00	11.46	15.09	2.13	2.52]
Moisture Content (%)	31.2	33.4	35.6	37.5	39.3	41.4	20.0	20.2	2

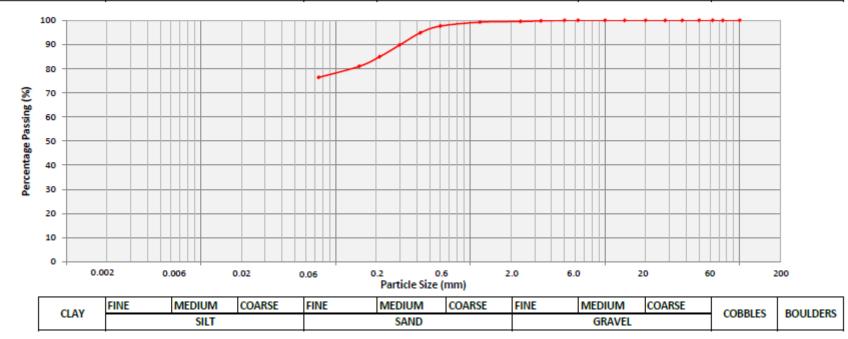
PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN11

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 11	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY ELASTIC SILT	JOB REF:	GCL/TGA-342/12	DATE TESTED:	14.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1089


TP11-12A

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN11(TP11-12A)MN12	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	ELASTIC SILT with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1183


TP11-12B

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN11(TP11-12B)MN12	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	ELASTIC SILT with Sand and Gravel	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1184

TP11-12C

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN11(TP11-12C)MN12	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	LEAN CLAY with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1185

DCP - CBR CORRELATION

MN11

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 11	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1089

									N		Blows					
	DCP TEST RESULTS				0	0	2	0		4	0		60		8	0
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)	50	PR :	1									
0	0	0	55		100											
1	1	1	75	20.0	100											
2	1	2	83	8.0	150											
3	1	3	93	10.0	150								_			
4	2	5	110	8.5	E 200											
5	2	7	128	9.0	E C											
6	2	9	140	6.0	Penetration (mm) 220 300 005			1	PR	2						
7	2	11	157	8.5	etra											
8	2	13	170	6.5	u 300											
9	2	15	185	7.5	-											
10	2	17	198	6.5	350											
11	5	22	233	7.0												
12	5	27	265	6.4	400						_	\mathbf{X}	_			
13	5	32	289	4.8										PR 3		
14	5	37	315	5.2	450											
15	5	42	344	5.8	500											
16	5	47	372	5.6	500											
17	10	57	429	5.7												
18	10	67	489	6.0												
					CP/CBR C	ORRELATI			Lopp	(0/)						
Pene	tration Ir	ndex	Ave	erage (mm/blov	V)		Estin	nate	d CBR	(%)						
	PR 1			19				9.	9							
	PR 2			7.5				32	.5							
	PR 3			5				54	6							
	PK 3			Э				54	.0							

Test By: LUCAS

ANGLE POINT BEARING CAPACITY

MN11

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 11								
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012			
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12			
MATERIAL DE	MATERIAL DESCRIPTION: SANDY ELASTIC SILT Sample No.: 1089								

LABORATORY TES	T RESULTS		
SHEARBOX		DENSITY	
$C(kN/m^2) =$	23	γ (kg/m ³) = 1883	
Ø (°) =	20	γ (kN/m ³) = 18.47	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
Whitlow. R	$N_q = 6.40$	
Basic Soil Mech.	N _y = 2.87	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 18.47 x 2.0 x 6.40) + (0.4 x 18.47 x 1.0 x 2.87)	654 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 654/3.0	218 kN/m ²

Calculations By: B.K.

TP11-12A

CALCULATION OF SAFE BEARING CAPACITY: MN 11 (TP11-12A) MN 12									
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013			
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03			
MATERIAL DESC	RIPTION:	Elastic SILT with S	Sand		Sample No.:	1183			

LABORATORY TEST R	ESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	23	γ(kg/m ³) = 1883
ø (°) =	20	γ (kN/m ³) = 18.47

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
	N _q = 6.40	
Whitlow. R Basic Soil Mech.	N _γ = 2.87	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 18.47 x 2.0 x 6.40) + (0.4 x 18.47 x 1.0 x 2.87)	654 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 654/3.0	218 kN/m ²

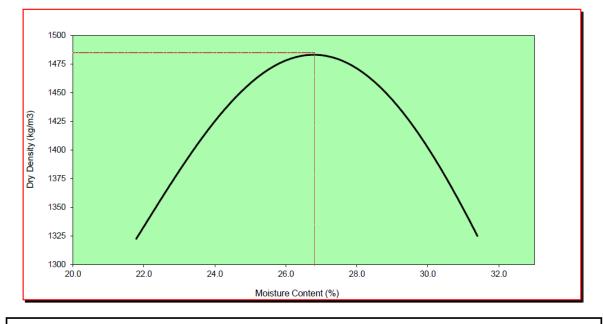
Calculations By: B.K.

TP11-12C

CALCULATION OF SAFE BEARING CAPACITY: MN 11 (TP11-12C) MN12								
PROPOSED P	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013			
2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03			
MATERIAL DESCRIPTION: SANDY L		Y		Sample No.:	1185			
	PROPOSED F 2.0M	PROPOSED POWERLINE	PROPOSED POWERLINE SITE: 2.0M LOCATION:	PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU 2.0M LOCATION: EASTERN	PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU DATE RECEIVED: 2.0M LOCATION: EASTERN JOB No.:			

LABORATORY TEST	RESULTS		
SHEARBOX		DENSITY	
$C(kN/m^2) =$	24	γ (kg/m³) =	1873
ø (°) =	21	γ (kN/m³) =	18.38

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
	N _q = 7.07	
Whitlow. R Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 24 x 15.81) + (0.8 x 18.38 x 2.0 x 7.07) + (0.4 x 18.38 x 1.0 x 3.42)	726 kN/m²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 726/3.0	242 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN11

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M	
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1089	
Material Description:	SANDY ELASTIC SILT		Sample Ref:	TP MN 11		Date received:	09.12.2012	
Moisture Ado	dition	200cc	250cc	300cc	350cc	400cc	450cc	
Mass of Mould+Base+Soil		5605	5737	5845	5883	5834	5736	
Mass of Mould+Base		3995	3995	3995	3995	3995	3995	
Mass of Compacted Soil		1610	1742	1850	1888	1839	1741	
Bulk Density (Kgs/m ³)		1610	1742	1850	1888	1839	1741	
Tin No.		G63	G08	G17	G13	G47	G15	
Weight Wet S	Soil	199.6	211.1	235.3	246.7	241.6	235.6	
Weight of Dry	/ Soil	163.9	170.8	187.2	193.5	186.4	179.3	
Weight of Water 35		35.7	40.3	48.1	53.2	<mark>55.2</mark>	56.3	
Moisture Content (%) 21.8		21.8	23.6	25.7	27.5	29.6	31.4	

Maximum Dry Density (Kg/m³): <u>1485</u>

26.8% **Optimum Moisture Content (%):**

Checked By: WK

Date Reported: 25.01.2013

Tested By: STEVE

CHEMICAL ANALYSIS

Angle Point MN11						
Depth	2.0m					
рН	6.84					
Chloride(%) mg/l	-					
Sulphate (mg/l)						

TP11	TP11-12A						
Depth	2.0m						
рН	8.01						
Chloride(%) mg/l	0.012						
Sulphate (mg/l)	0.034						

TP11-12B						
Depth	2.0m					
рН	7.85					
Chloride(%) mg/l	0.010					
Sulphate (mg/l)	0.023					

TP11	I-12C
Depth	2.0m
рН	7.41
Chloride(%) mg/l	0.009
Sulphate (mg/l)	0.036

INSITU DENSITY TEST

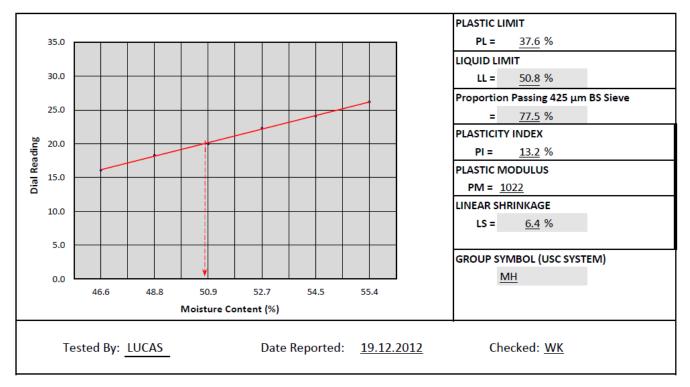
	TP11-12A
Depth (m)	2.0
Bulk density (kg/m3)	1554
Moisture Content (%)	30.2
Dry Density (kg/m3)	1193
Maximum Dry Density (kg/m3)	1383
Relative Compaction (%)	86.3

ANGLE POINT 11 LOG

JOB REF:		GCL/NCE_342/12
		MN 11
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	2.0	Grey SILT with Sand
V		

TEST POINT 11-12A, 11-12B, 11-12C LOGS

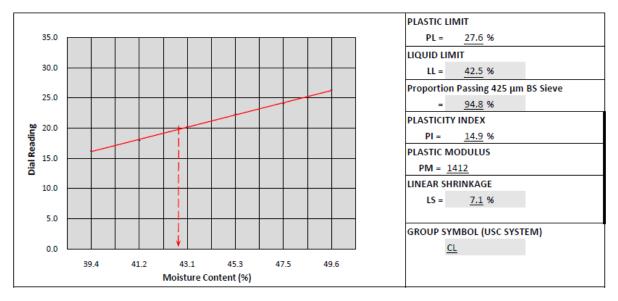
PR	OJECT:	NANY	YUKI-ISIOLO-MERU POWERLINE	JOB REF:		GCL/NCE_356/03	DAT	E:	23 - 28.02.2013	
	SITE:		NANYUKI-ISIOLO-MERU				LOGGED	BY:	STEVE	
			(TP11-12A) MN12			l (TP11-12B) MN12			(TP11-12C) MN12	
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	
0.5		1.0	Dark Grey CLAY (Black Cotton Soil)		1.2	Brownish Red Sandy SILT		1.2	Brownish Red Sandy SILT	
1.5	× × × ×	2.0	Greyish Brown Elastic SILT with Sand		2.0	Brownish Red Elastic SILT with Sand and Gravel		9 1 1	Brownish Red Elastic SILT with Sand and Gravel	
2.5										


SEGMENT 11

ATTERBERG LIMITS BS 1377 - 2: 1990

MN12

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
	SANDY ELASTIC SILT WITH				
Material Description:	GRAVEL	Job Reference:	GCL/TGA-342/12	Sample No.:	1090
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012


		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.1	18.3	20.0	22.3	24.1	26.2	-	-	
Tin No	24	51	66	20	8	79	54	63	
Mass of Wet Soil (g)	39.64	48.32	42.65	35.75	43.37	51.48	19.79	23.48	
Mass of Dry Soil (g)	27.04	32.47	28.27	23.41	28.07	33.13	14.39	17.05	
Mass of Moisture (g)	12.60	15.85	14.38	12.34	15.30	18.35	5.40	6.43	
Moisture Content (%)	46.6	48.8	50.9	52.7	54.5	55.4	37.5	37.7	37

TP12-13A

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN12 (TP12-13A)MN13	Date Received:	06.03.2013
Material Description:	LEAN CLAY with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1186
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	18.03.2013


		LIQUID LIMIT						PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.2	18.0	20.2	22.3	24.1	26.3	-	-		
Tin No	23	25	16	24	53	26	58	14		
Mass of Wet Soil (g)	37.99	42.57	47.86	38.39	44.53	48.52	26.05	32.92	1	
Mass of Dry Soil (g)	27.25	30.15	33.45	26.42	30.19	32.43	20.43	25.78	1	
Mass of Moisture (g)	10.74	12.42	14.41	11.97	14.34	16.09	5.62	7.14		
Moisture Content (%)	39.4	41.2	43.1	45.3	47.5	49.6	27.5	27.7	2	

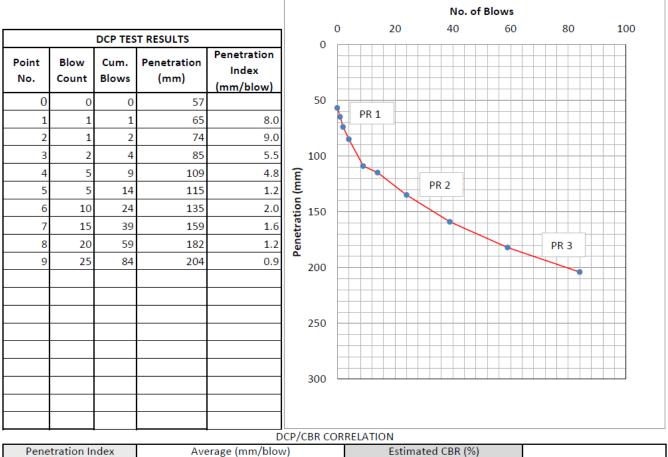
PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN12

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 12	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY ELASTIC SILT + GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	14.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1090

TP12-13A

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN12(TP12-13A)MN13	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	LEAN CLAY with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1186



DCP - CBR CORRELATION

MN12

NESHCONSULT ENGINEERING

	OSED POWERLINE	Location:	EASTERN	Test Location	IVIN 12	Date of Test:	06.12.2012
Site: NANY	UKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1090

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	8	29.9	
PR 2	3.4	89.5	
PR 3	1.2	339.4	

Test By: LUCAS

ANGLE POINT BEARING CAPACITY

MN12

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 12					
PROJECT: PROPOSED POWERLINE			SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH: 2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DE	SCRIPTION:	SANDY ELAS	Y ELASTIC SILT WITH GRAVEL		Sample No.:	1090

LABORATORY TEST RESULTS

L

SHEARBOX		DENSITY		
$C(kN/m^2) =$	26	γ (kg/m ³) =	1944	
ø (°) =	22	γ (kN/m ³) =	19.07	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
Whitlow. R	N _q = 7.82	
Basic Soil Mech.	N _Y = 4.07	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 26 x 16.88) + (0.8 x 19.07 x 2.0 x 7.82) + (0.4 x 19.07 x 1.0 x 4.07)	840 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 840/3.0	280 kN/m ²

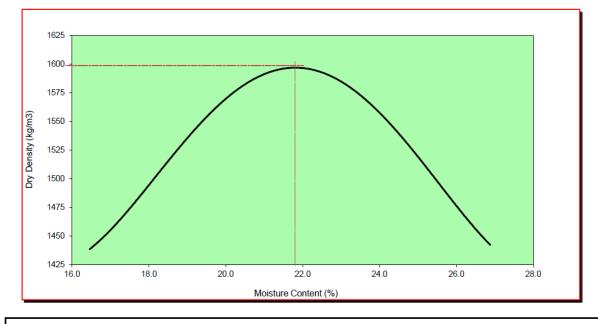
Calculations By: B.K.

TP12-13

CALCULATION OF SAFE BEARING CAPACITY: MN12 (TP12-13) MN13						
PROJECT:	T: PROPOSED POWERLINE		SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
DEPTH:	DEPTH: 2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESCRIPTION:		SANDY LEAN CLA	AY		Sample No.:	1186

LABORATORY TEST RESULTS					
SHEARBOX		DENSITY			
$C(kN/m^2) =$	23	γ (kg/m ³) = 1785			
ø (°) =	21	γ (kN/m ³) = 17.51			

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
	N _q = 7.07	
Whitlow. R Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 17.51 x 2.0 x 7.07) + (0.4 x 17.51 x 1.0 x 3.42)	695 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 695/3.0	232 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN12

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1090
Material Description: SANDY ELASTIC SILT WITH GRAVEL			Sample Ref:	TP MN 12		Date received:	09.12.2012
Moisture Add	dition	150cc	200cc	250cc	300cc	350cc	400cc
Mass of Moul	ld+Base+Soil	5670	5804	5910	5949	5903	5825
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1675	1809	1915	1954	1908	1830
Bulk Density	(Kgs/m ³)	1675	1809	1915	1954	1908	1830
Tin No.		<mark>G14</mark>	G06	G23	G31	G18	G49
Weight Wet S	Soil	179.7	217.8	261.0	256.0	223.5	280.8
Weight of Dry Soil		154.3	183.5	216.1	208.8	179.2	221.3
Weight of Water 2		25.4	34.3	44.9	47.2	44.3	<mark>59.5</mark>
Moisture Content (%) 16.		16.5	18.7	20.8	22.6	24.7	26.9

Optimum Moisture Content (%): <u>21.6%</u>

Maximum Dry Density (Kg/m³): <u>1599</u>

Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN12				
Depth	2.0m			
рН	7.76			
Chloride(%) mg/l	0.39			
Sulphate (mg/l)	0.001			

TP12-13A		
Depth	2.0m	
рН	8.22	
Chloride(%) mg/l	0.006	
Sulphate (mg/l)	0.027	

TP12-13		
Depth	1.0m	
рН	7.32	
Chloride(%) mg/l	0.006	
Sulphate (mg/l)	0.025	

INSITU DENSITY TEST

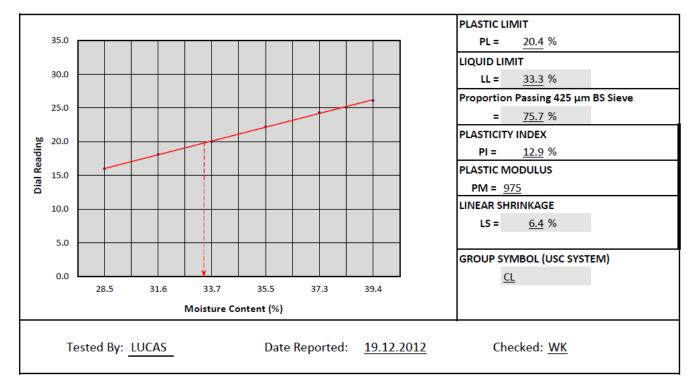
TP12-13A		
Depth (m)	2.0	
Bulk density (kg/m3)	1571	
Moisture Content (%)	32.9	
Dry Density (kg/m3)	1182	
Maximum Dry Density (kg/m3)	1383	
Relative Compaction (%)	85.5	

ANGLE POINT 12 LOG

DATE	6	03.09.12.2012
LOGGED BY:		LUCAS
MN 12		
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
		Dark Grey CLAY (Black Cotton Soil)
	0.6	
	2.0	Light Brown Silty SAND with Gravel
V		

-	PROJECT: NANYUKI-ISIOLO-MERU POWERLINE SITE: NANYUKI-ISIOLO-MERU		JOB REF:		GCL/NCE_356/03	
SITE:			MN44 (TD40-400) MN40			
SCALE LEGEND	DEPTH	(TP12-13A) MN13 MATERIAL DESCRIPTION	LEGEND	DEPTH	(TP12-13B) MN13 MATERIAL DESCRIPTION	
0 0.5 1 1.5	(m)	Brown Sandy CLAY		(m) 0.9	Brown Sandy CLAY Cobble and boulder fractions	
2 . <u> </u>	2.0	Greyish Brown Lean CLAY with sand				
2.5						

TEST POINT 12-13A, 12-13B LOGS


SEGMENT 12

ATTERBERG LIMITS BS 1377 - 2: 1990

MN13

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1091
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012

		LIQUID LIMIT						PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.0	18.1	20.0	22.2	24.3	26.1	-	-		
Tin No	8	58	23	65	20	32	42	11		
Mass of Wet Soil (g)	54.86	52.73	52.17	52.45	47.26	56.19	13.54	17.61		
Mass of Dry Soil (g)	42.69	40.07	39.02	38.71	34.42	40.30	11.24	14.63		
Mass of Moisture (g)	12.17	12.66	13.15	13.74	12.84	15.89	2.30	2.98		

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN13

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 13	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	14.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1091

DCP - CBR CORRELATION

MN13

ANGLE POINT BEARING CAPACITY

MN13

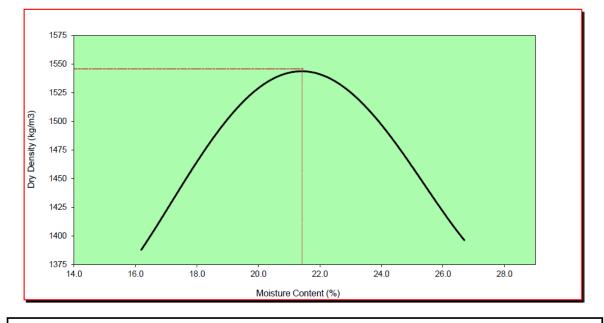
	CALCULATION OF SAFE BEARING CAPACITY: TP MN 13									
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012				
DEPTH:	2.0M		2.0M LOCATION: EASTERN		JOB No.:	GCL/TGA_342/12				
MATERIAL DE	MATERIAL DESCRIPTION: SANDY LEA				Sample No.:	1091				

LABORATORY TEST RESULTS

SHEARBOX		DENSITY	
$C(kN/m^2) =$	24	γ (kg/m ³) = 1	873
ø (°) =	21	γ(kN/m ³) = 18	3.38

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R	N _q = 7.07	
Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	$q_f = (1.3 \times 24 \times 15.81) + (0.8 \times 18.38 \times 2.0 \times 7.07) + (0.4 \times 18.38 \times 1.0 \times 3.42)$	726 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 726/3.0	242 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN13

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M	
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1091	
Material Description:	SANDY LEAN CLAY		Sample Ref:	TP MN 13		Date received:	09.12.2013	
Moisture Add	dition	200cc	250cc	300cc	350cc	400cc	450cc	
Mass of Moul	ld+Base+Soil	5607	5731	5835	5878	5836	5764	
Mass of Mould+Base		3995	3995	3995	3995	3995	3995	
Mass of Compacted Soil 1612		1612	1736	1840	1883	1841	1769	
Bulk Density	(Kgs/m ³)	1612	1736	1840	1883	1841	1769	
Tin No.		G31	G19	G11	G47	G36	G45	
Weight Wet S	Soil	181.6	176.8	207.7	227.8	239.9	255.3	
Weight of Dry	/ Soil	156.3	149.7	172.8	186.3	192.7	201.5	
Weight of Wa	iter	25.3	27.1	34.9	41.5	47.2	5 <mark>3.</mark> 8	
Moisture Cor	ntent (%)	16.2	18.1	20.2	22.3	24.5	26.7	

<u>21.4%</u> **Optimum Moisture Content (%):**

Maximum Dry Density (Kg/m³): <u>1543</u>

Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN13						
Depth	2.0m					
рН	8.41					
Chloride(%) mg/l	0.53					
Sulphate (mg/l)	0.002					

ANGLE POINT 13 LOG

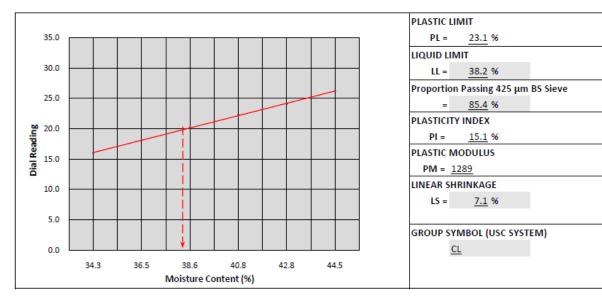
PR	OJ ECT:	N AN	YUKI-ISIO LO - MERU POWERLINE		
S	ITE:		N ANYUKI-ISIOLO-MERU		
	MN 13				
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION		
0.5		0.6	Greyish Brown SILT with sand		
1					
1.5			Light Brown Silty SAND with Gravel		
2	\sim	2.0			
2.5					

SEGMENT 13

ATTERBERG LIMITS BS 1377 - 2: 1990

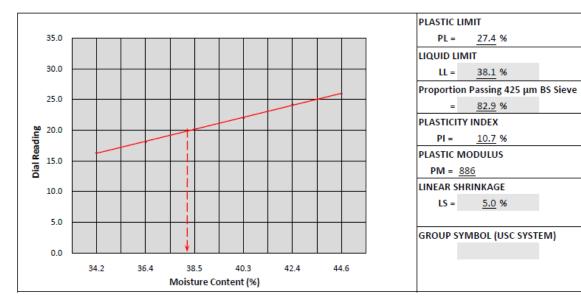
MN14

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1092
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012


		LIQUID LIMIT						PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.2	18.1	20.1	22.2	24.0	26.3	-	-		
Tin No	23	25	16	24	53	26	58	14		
Mass of Wet Soil (g)	40.77	35.51	40.19	46.70	51.16	39.28	19.88	15.65		
Mass of Dry Soil (g)	32.96	27.42	30.53	35.01	37.81	28.63	16.79	13.21		
	7.81	8.09	9.66	11.69	13.35	10.65	3.09	2.44		
Mass of Moisture (g)	7.81	0.05	5.00	11.00						

TP14-15A

Project: NANY	NYUKI ISIOLO MERU POW	Site / Location:	MN14 (TP14-15A)MN15	Date Received:	06.03.2013
Material Description: LEAN	N CLAY with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1188
Sampled By: GEO) CON	Depth:	2.0M	Date Tested:	18.03.2013

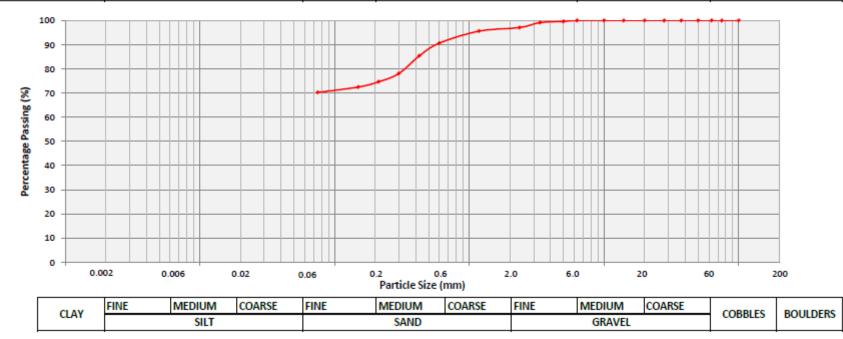

			LIQUID	LIMIT			PL	ASTIC LIN	1IT
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.0	18.1	20.2	22.3	24.1	26.2	-	-	
Tin No	14	21	3	37	30	52	61	45	
Mass of Wet Soil (g)	50.54	56.91	48.02	53.28	60.05	58.90	25.15	28.02	
Mass of Dry Soil (g)	37.63	41.69	34.65	37.84	42.05	40.76	20.45	22.74	
Mass of Moisture (g)	12.91	15.22	13.37	15.44	18.00	18.14	4.70	5.28	
Moisture Content (%)	34.3	36.5	38.6	40.8	42.8	44.5	23.0	23.2	2

TP14-15B

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN14 (TP14-15B)MN15	Date Received:	06.03.2013
Material Description:	SILT with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1189
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	18.03.2013

			LIQUID	LIMIT			PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.1	20.2	22.0	24.2	26.0	-	-]
Tin No	8	52	61	24	15	2	34	29	
Mass of Wet Soil (g)	58.75	44.33	55.88	64.43	61.26	54.12	23.03	31.00	1
Mass of Dry Soil (g)	43.78	32.50	40.34	45.92	43.02	37.43	18.09	24.31	1
Mass of Moisture (g)	14.97	11.83	15.54	18.51	18.24	16.69	4.94	6.69	
Moisture Content (%)	34.2	36.4	38.5	40.3	42.4	44.6	27.3	27.5	27

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN14

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 14	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	13.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1092

TP14-15A

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN14(TP14-15A)MN15	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	LEAN CLAY with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1188

TP14-15B

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN14(TP14-15B)MN15	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	SILT with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1189

DCP - CBR CORRELATION

MN14

ANGLE POINT BEARING CAPACITY

MN14

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 14							
PROJECT:	PROPOSED POWERLINE		SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012		
DEPTH:	DEPTH: 2.0M			EASTERN	JOB No.:	GCL/TGA_342/12		
MATERIAL DE	MATERIAL DESCRIPTION: SANDY LEA				Sample No.:	1092		

LABORATORY TEST RESULTS

			_
SHEARBOX		DENSITY	
$C(kN/m^2) =$	23	γ (kg/m ³) = 1785	
ø (°) =	21	γ(kN/m ³) = 17.51	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R	$N_q = 7.07$	
Basic Soil Mech.	N _γ = 3.42	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	$q_f = (1.3 \times 23 \times 15.81) + (0.8 \times 17.51 \times 2.0 \times 7.07) + (0.4 \times 17.51 \times 1.0 \times 3.42)$	695 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 695/3.0	232 kN/m ²

Calculations By: B.K.

TP14-15A

	CALCULATION OF SAFE BEARING CAPACITY: MN14 (TP14-15A) MN15						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013	
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03	
MATERIAL DESCRIPTION: SANDY LEAN		SANDY LEAN CL	AY		Sample No.:	1188	

LABORATORY TEST RESULTS						
SHEARBOX		<u>DENSITY</u>				
$C(kN/m^2) =$	23	γ (kg/m ³) = 1860				
ø (°) =	22	γ (kN/m ³) = 18.25				

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
	N _q = 7.82	
Whitlow. R Basic Soil Mech.	N _γ = 4.07	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 16.88) + (0.8 x 18.25 x 2.0 x 7.82) + (0.4 x 18.25 x 1.0 x 4.07)	763 kN/m²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 763/3.0	254 kN/m ²

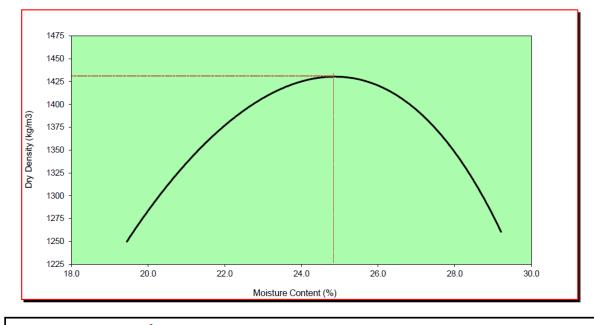
Calculations By: B.K.

TP14-15B

CALCULATION OF SAFE BEARING CAPACITY: MN14 (TP14-15) MN15							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013	
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03	
MATERIAL DESCRIPTION: SANDY SI		SANDY SILT			Sample No.:	1189	

LABORATORY TEST	RESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	23	γ (kg/m³) = 1770
ø (°) =	20	γ (kN/m ³) = 17.37

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
	N _q = 6.40	
Whitlow. R Basic Soil Mech.	N _γ = 2.87	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 17.37 x 2.0 x 6.40) + (0.4 x 17.37 x 1.0 x 2.87)	641 kN/m²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 641/3.0	214 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN14

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1092
Material Description:	SANDY LEAN CLAY		Sample Ref: TP MN 14			Date received:	09.12.2012
Moisture Add	dition	250cc	300cc	350cc	400cc	450cc	500cc
Mass of Moul	ld+Base+Soil	4449	4589	4701	4743	4719	4584
Mass of Moul	ld+Base	2956	2956	2956	2956	2956	2956
Mass of Com	pacted Soil	1493	1633	1745	1787	1763	1628
Bulk Density	(Kgs/m ³)	1493	1633	1745	1787	1763	1628
Tin No.		G33	G27	G37	G21	G01	G29
Weight Wet S	Soil	215.0	228.0	265.0	257.0	224.0	230.0
Weight of Dry	/ Soil	180.0	188.0	215.0	205.0	176.0	178.0
Weight of Water 35.0		40.0	50.0	52.0	48.0	52.0	
Moisture Cor	ntent (%)	19.4	21.3	23.3	25.4	27.3	29.2

Maximum Dry Density (Kg/m³): <u>1430</u>

Optimum Moisture Content (%): <u>24.8%</u>

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN14					
Depth	2.0m				
рН	8.54				
Chloride(%) mg/l	0.69				
Sulphate (mg/l)	0.001				

TP14-15A					
Depth	2.0m				
рН	7.08				
Chloride(%) mg/l	0.060				
Sulphate (mg/l)	0.023				

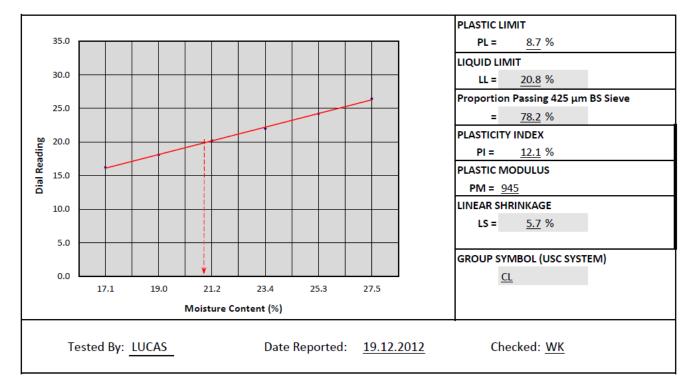
TP14-15B				
Depth	2.0m			
рН	7.25			
Chloride(%) mg/l	0.014			
Sulphate (mg/l)	0.033			

ANGLE POINT 14 LOG

JOB REF:		GCL/NCE_342/12
		MN 14
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	0.9	Brown SILT
~	2.0	Brown Silty SAND with Gravel
V		

TEST POINT 14-15A, 14-15B LOGS

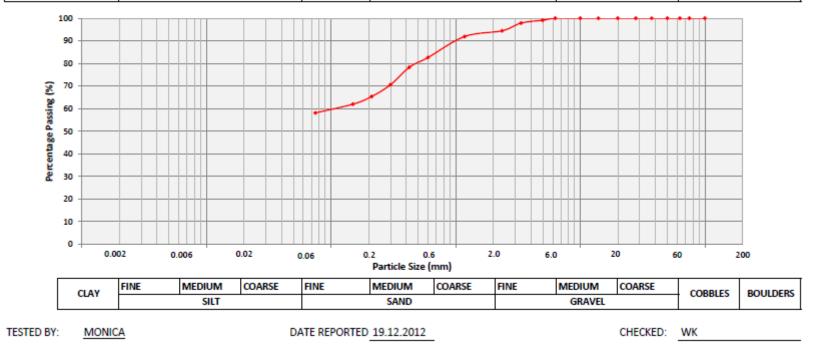
Image: state of the state o	DATE:	23 - 28.02.2013	PR	OJECT:	NANY	/UKI-ISIOLO-MERU POWERLINE
LEGEND DEPTH (m) MATERIAL DESCRIPTION SCALE LEGEND DEPTH (m) MATERIAL DESCRIPTION 0	LOGGED BY:	STEVE	9	SITE:		NANYUKI-ISIOLO-MERU
LEGEND DATA MATERIAL DESCRIPTION SLALE LEGEND (m) MATERIAL DESCRIPTION (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	MN14	(TP14-15A) MN15				(TP14-15B) MN15
Brown Lean CLAY with sand x x	LEGEND	MATERIAL DESCRIPTION	SCALE	LEGEND		MATERIAL DESCRIPTION
			0.5 1 1.5 2		1.0	Grey Silty SAND Brown Sandy SILT


SEGMENT 14

ATTERBERG LIMITS BS 1377 - 2: 1990

MN15

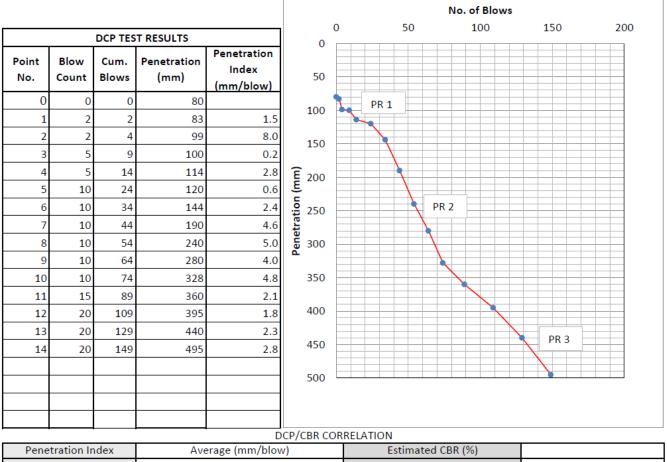
Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1093
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012


	LIQUID LIMIT						PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.2	22.0	24.2	26.4	-	-	
Tin No	41	21	23	39	33	26	15	11	
Mass of Wet Soil (g)	27.92	36.94	48.19	43.32	50.21	45.95	19.68	16.67	
Mass of Dry Soil (g)	23.84	31.04	39.76	35.11	40.07	36.04	18.12	15.32	
Mass of Moisture (g)	4.08	5.90	8.43	8.21	10.14	9.91	1.56	1.35	
Moisture Content (%)	17.1	19.0	21.2	23.4	25.3	27.5	8.6	8.8	8

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN15

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 15	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	14.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1093



DCP - CBR CORRELATION

MN15

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 15	Date of Test:	07.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1093

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	4.4	64.3	
PR 2	4.2	68.3	
PR 3	2.2	156.2	

Test By: LUCAS

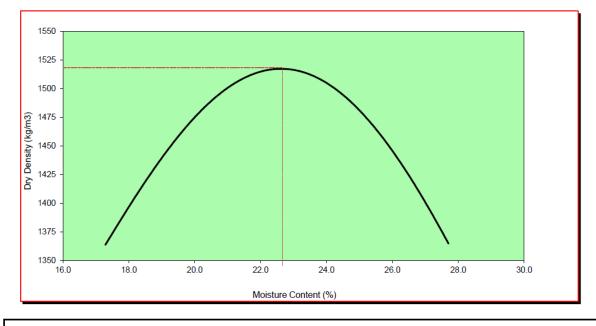
ANGLE POINT BEARING CAPACITY

MN15

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 15							
PROJECT:	PROPOSED	ROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU DATE RECEIVED: 09.12.2012						
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12		
MATERIAL DESCRIPTION: SANDY LEA			I CLAY		Sample No.:	1093		

LABORATORY TES	T RESULTS			
SHEARBOX		DENSITY		
$C(kN/m^2) =$	23	y (kg/m ³) =	1860	
ø (°) =	22	γ(kN/m ³) =	18.25	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
Whitlow. R	N _q = 7.82	
Basic Soil Mech.	N _y = 4.07	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 16.88) + (0.8 x 18.25 x 2.0 x 7.82) + (0.4 x 18.25 x 1.0 x 4.07)	763 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 763/3.0	254 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN15

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M	
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1093	
Material Description:	SANDY LEAN CLAY		Sample Ref: TP MN 15			Date received:	09.12.2012	
Moisture Ado	dition	150cc	200cc	250cc	300cc	350cc	400cc	
Mass of Moul	ld+Base+Soil	5594	5721	5823	5865	5823	5738	
Mass of Mould+Base		3995	3995	3995	3995	3995	3995	
Mass of Com	pacted Soil	1599	1726	1828	1870	1828	1743	
Bulk Density	(Kgs/m ³)	1599	1726	1828	1870	1828	1743	
Tin No.		G27	G64	G19	G07	G23	G43	
Weight Wet S	Soil	254.4	276.3	240.6	265.1	275.6	283.0	
Weight of Dry	/ Soil	216.9	231.8	198.2	214.5	219.1	221.6	
Weight of Wa	ater	37.5	44.5	42.4	50.6	56.5	61.4	
Moisture Cor	ntent (%)	17.3	19.2	21.4	23.6	25.8	27.7	

Maximum Dry Density (Kg/m³): <u>1515</u>

Optimum Moisture Content (%): <u>22.8%</u>

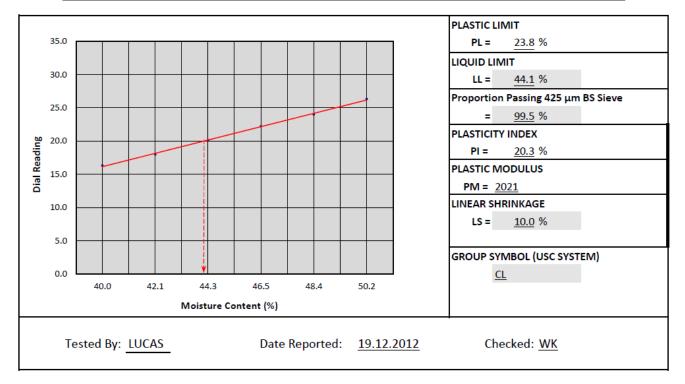
Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN15						
Depth	2.0m					
рН	8.06					
Chloride(%) mg/l	0.39					
Sulphate (mg/l)						

ANGLE POINT 15 LOG

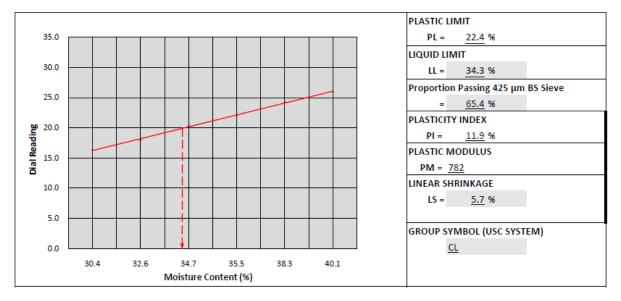
DATE	<u>:</u>	03.09.12.2012
LOGGED	BY:	LUCAS
		MN 15
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
	1.1	Grey SILT with Sand
A	2.0	Greyish Brown Silty SAND with Gravel


SEGMENT 15

ATTERBERG LIMITS BS 1377 - 2: 1990

MN16

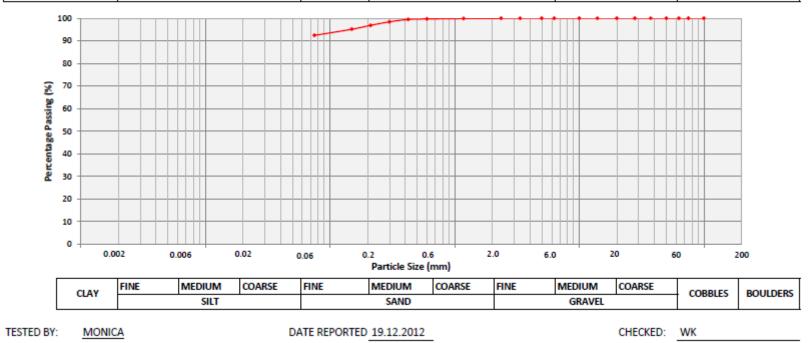
Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1094
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012


		LIQUID LIMIT				PLASTIC LIMIT			
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.0	20.1	22.2	24.0	26.3	-	-	
Tin No	41	21	32	62	32	8	74	51	
Mass of Wet Soil (g)	38.67	44.46	54.01	49.68	56.75	51.61	23.24	29.03	
Mass of Dry Soil (g)	27.62	31.29	37.43	33.91	38.24	34.36	18.79	23.43	
Mass of Moisture (g)	11.05	13.17	16.58	15.77	18.51	17.25	4.45	5.60	
Moisture Content (%)	40.0	42.1	44.3	46.5	48.4	50.2	23.7	23.9	23

TP16-17B

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN16 (TP16-17B)MN17	Date Received:	06.03.2013
Material Description:	LEAN CLAY with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1191
Sampled By:	GEO CON	Depth:	1.7M	Date Tested:	18.03.2013

			LIQUID	LIMIT			PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm) 0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.0	20.3	22.1	24.2	26.0	-	-	
Tin No	2	52	63	35	14	28	24	51	
Mass of Wet Soil (g)	49.71	47.79	54.32	62.00	68.47	57.72	25.26	22.91	1
Mass of Dry Soil (g)	38.12	36.04	40.33	45.76	49.51	41.20	20.64	18.73	1
Mass of Moisture (g)	11.59	11.75	13.99	16.24	18.96	16.52	4.62	4.18]
Moisture Content (%)	30.4	32.6	34.7	35.5	38.3	40.1	22.4	22.3	2



PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN16

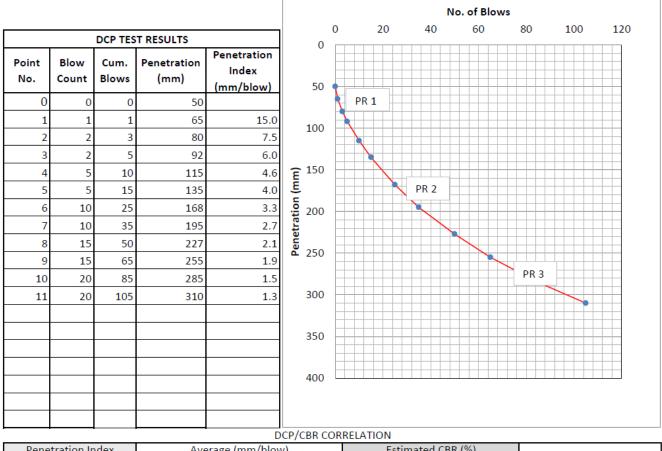
NESHCONSULT ENGINEERING

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 16	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	14.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1094

227

TP16-17B

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN16(TP16-17B)MN17	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	LEAN CLAY with Sand and Gravel	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1191



DCP - CBR CORRELATION

MN16

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 16	Date of Test:	03.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1094

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	11	19.9	
PR 2	3.8	77.6	
PR 3	1.4	278.6	

Test By: LUCAS

ANGLE POINT BEARING CAPACITY

MN16

CALCULATION OF SAFE BEARING CAPACITY: TP MN 16							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012	
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DE	SCRIPTION:	SANDY LEAN	I CLAY		Sample No.:	1094	

LABORATORY TEST	r RESULTS		
SHEARBOX		DENSITY	
$C(kN/m^2) =$	23	γ(kg/m ³) = 1770	
ø (°) =	20	γ (kN/m ³) = 17.37	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
Whitlow. R	N _q = 6.40	
Basic Soil Mech.	N _γ = 2.87	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 17.37 x 2.0 x 6.40) + (0.4 x 17.37 x 1.0 x 2.87)	641 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 641/3.0	214 kN/m ²

Calculations By: B.K.

Checked: <u>WK</u>

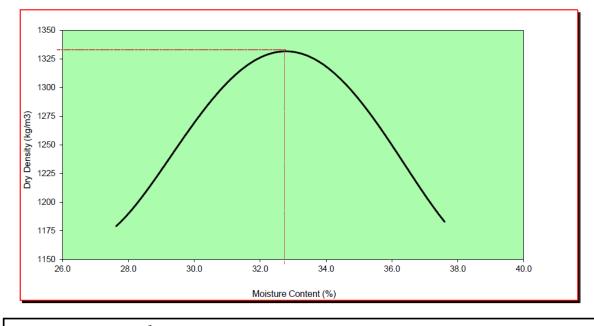
I

TP16-17B

CALCULATION OF SAFE BEARING CAPACITY: MN 16 (TP16-17B) MN17							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013	
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03	
MATERIAL DESCRIPTION: SANDY ELASTIC SILT				Sample No.:	1191		

LABORATORY TEST R	ESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	23	γ (kg/m ³) = 1804
ø (°) =	20	γ (kN/m ³) = 17.69

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
	N _q = 6.40	
Whitlow. R Basic Soil Mech.	N _y = 2.87	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 17.69 x 2.0 x 6.40) + (0.4 x 17.69 x 1.0 x 2.87)	645 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 645/3.0	215 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN16

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1094
Material Description:	SANDY LEAN CLAY		Sample Ref:	TP MN 16	Date received:	09.12.2012	
Moisture Ado	dition	250cc	300cc	350cc	400cc	450cc	500cc
Mass of Mou	ld+Base+Soil	5499	5636	5736	5773	5713	5623
Mass of Mou	ld+Base	3995	3995	3995	3995	3995	3995
Mass of Com	pacted Soil	1504	1641	1741	1778	1718	1628
Bulk Density	(Kgs/m ³)	1504	1641	1741	1778	1718	1628
Tin No.		G44	G36	G55	G61	G39	G62
Weight Wet S	Soil	219.9	251.2	267.4	282.9	295.8	325.3
Weight of Dry	y Soil	172.3	193.5	202.7	211.6	218.3	236.4
Weight of Wa	ater	47.6	57.7	64.7	71.3	77.5	88.9
Moisture Cor	ntent (%)	27.6	29.8	31.9	33.7	35.5	37.6

Maximum Dry Density (Kg/m³): <u>1333</u>

Tested By: STEVE

Optimum Moisture Content (%): <u>32.8%</u>

Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

	Angle Point MN16							
Depth	2.0m							
рН	6.88							
Chloride(%) mg/l	-							
Sulphate (mg/l)	0.001							

TP16	5-17A
Depth	1.0m
рН	7.27
Chloride(%) mg/l	-
Sulphate (mg/l)	0.022

TI	P16-17B
Depth	1.7m
рН	7.80
Chloride(%) mg/l	0.011
Sulphate (mg/l)	0.027

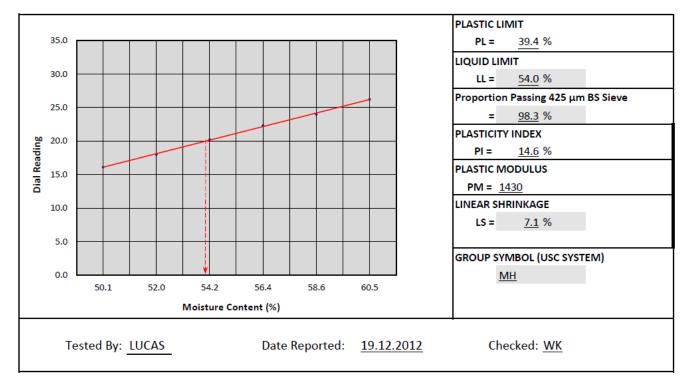
ANGLE POINT 16 LOG

PR	OJECT:	NAN	YUKI-ISIOLO-MERU POWERLINE					
<u> </u>	ITE:		NANYUKI-ISIOLO-MERU					
		MN 16						
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION					
0 0.5 1 1.5 2		2.0	Brownish Red Elastic SILT with Sand					
2.5	\sim							

TEST POINT 16-17A, 16-17B LOGS

(TP16-17B erroneously labelled TP14-15A in below figure)

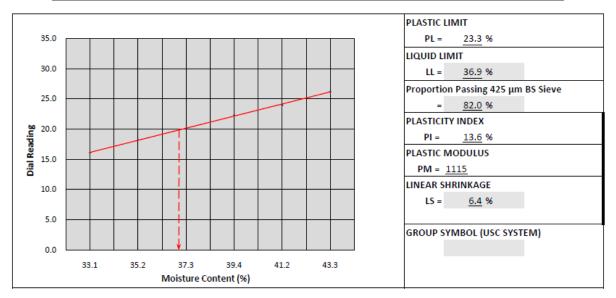
JOB REF:		GCL/NCE_356/03	DAT	Ε:	23 - 28.02.2013
			LOGGED) BY:	STEVE
		(TP16-17A) MN17		(TP14-15A) MN15	
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
		Grey Volcanic fragmented rock fractions		0.6	Dark Grey CLAY (Black Cotton soil)
S S S S S S S S S S S S S S S S S S S	. 1.0			2.0	Brown Lean CLAY with Sand and Gravel fraction
			\vee		


SEGMENT 16

ATTERBERG LIMITS BS 1377 - 2: 1990

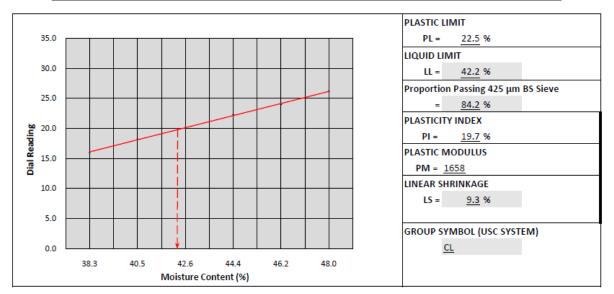
MN17

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY ELASTIC SILT	Job Reference:	GCL/TGA-342/12	Sample No.:	1095
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012


	LIQUID LIMIT					PLASTIC LIMIT			
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.1	18.0	20.2	22.3	24.0	26.2	-	-	
Tin No	2	52	63	35	14	28	24	51	
Mass of Wet Soil (g)	40.69	47.52	40.76	44.89	55.73	42.03	25.40	33.91	
Mass of Dry Soil (g)	27.11	31.26	26.44	28.70	35.14	26.19	18.22	24.31	
Mass of Moisture (g)	13.58	16.26	14.32	16.19	20.59	15.84	7.18	9.60	
Moisture Content (%)	50.1	52.0	54.2	56.4	58.6	60.5	39.4	39.5	39

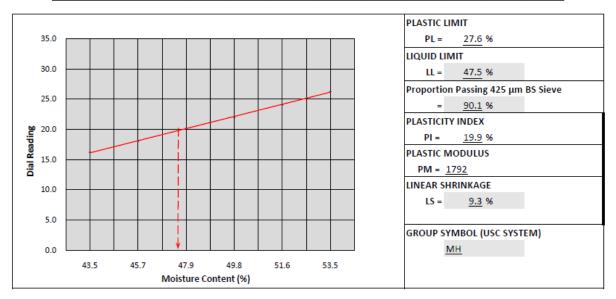
TP17-18A

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN17 (TP17-18A)MN18	Date Received:	06.03.2013
Material Description:	LEAN CLAY with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1192
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	18.03.2013


		LIQUID LIMIT					PL	ЛТ	
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.1	18.2	20.1	22.3	24.0	26.2	-	-	
Tin No	8	53	66	45	4	24	56	3	
Mass of Wet Soil (g)	56.95	49.31	56.33	60.95	63.55	61.92	19.00	24.38	1
Mass of Dry Soil (g)	42.79	36.47	41.02	43.72	45.01	43.21	15.42	19.76	1
Mass of Moisture (g)	14.16	12.84	15.31	17.23	18.54	18.71	3.58	4.62]
Moisture Content (%)	33.1	35.2	37.3	39.4	41.2	43.3	23.2	23.4	2

TP17-18B

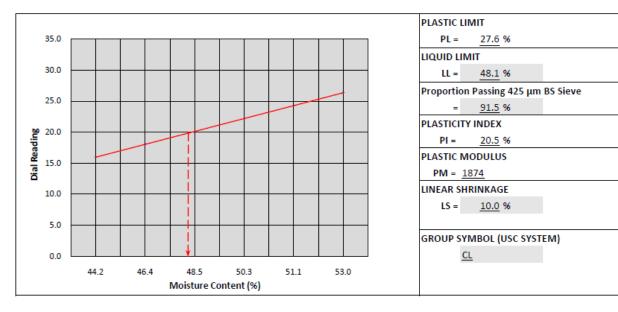
Project: NAI	ANYUKI ISIOLO MERU POW	Site / Location:	MN17 (TP17-18B)MN18	Date Received:	06.03.2013
Material Description: LEA	AN CLAY with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1193
Sampled By: GEC	O CON	Depth:	2.0M	Date Tested:	18.03.2013


		LIQUID LIMIT					PL	1IT		
Test No.		1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (m	m)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (m	m)	16.0	18.2	20.1	22.3	24.0	26.2	-	-]
Tin No		57	46	25	19	13	6	23	18	
Mass of Wet Soil (£) :	32.79	36.47	47.27	39.45	51.30	42.03	17.14	23.67	1
Mass of Dry Soil (3) :	23.71	25.96	33.15	27.32	35.09	28.40	14.00	19.31	
Mass of Moisture	;)	9.08	10.51	14.12	12.13	16.21	13.63	3.14	4.36	
Moisture Content (9	6)	38.3	40.5	42.6	44.4	46.2	48.0	22.4	22.6	2

TP17-18C

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN17 (TP17-18C)MN18	Date Received:	06.03.2013
Material Description:	SILT with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1194
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	19.03.2013

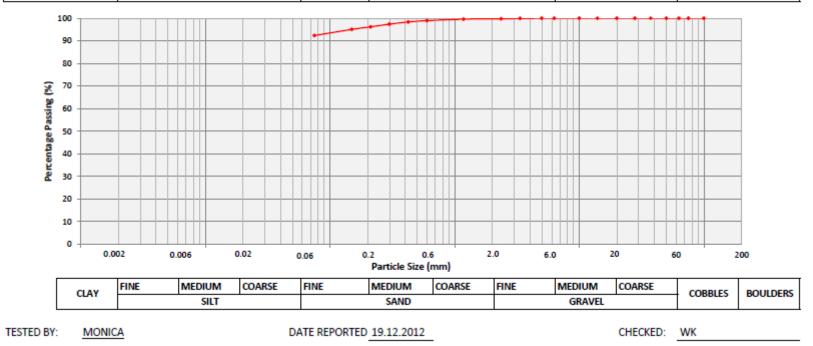
		LIQUID LIMIT				PLASTIC LIMIT				
Test No.		1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading	mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.2	22.0	24.1	26.3	-	-	
Tin No		59	45	62	33	21	13	6	51	
Mass of Wet Soil	(g)	38.95	45.69	37.06	50.11	34.72	45.01	30.67	34.82	1
Mass of Dry Soil	(g)	27.14	31.36	25.06	33.45	22.90	29.32	24.02	27.30]
Mass of Moisture	(g)	11.81	14.33	12.00	16.66	11.82	15.69	6.65	7.52]
Moisture Content	(%)	43.5	45.7	47.9	49.8	51.6	53.5	27.7	27.5	2


TP17-18D

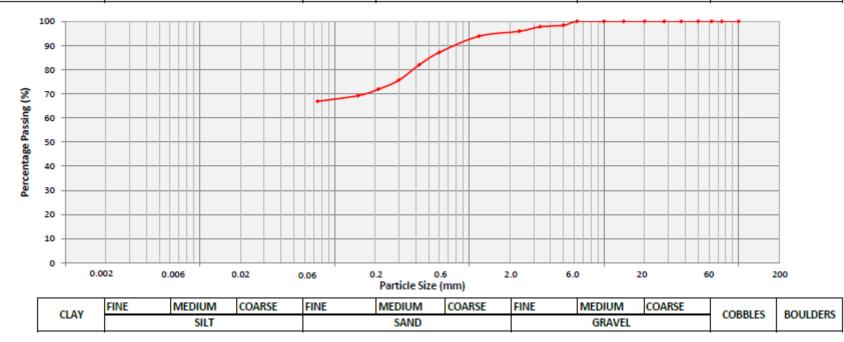
NESHCONSULT ENGINEERING

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN17 (TP17-18D)MN18	Date Received:	06.03.2013
Material Description:	LEAN CLAY	Job Reference:	GCL/NAS-356/13	Sample No.:	1195
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	19.03.2013

Г


		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm) 0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm) 16.0	18.1	20.0	22.2	24.3	26.4	-	-	
Tin No			54	40		-	45		-
TIII NO	42	21	51	19	43	7	15	34	
Mass of Wet Soil (g)	61.96	49.29	45.22	62.87	54.88	62.44	26.88	33.87	
Mass of Dry Soil (g)	42.97	33.67	30.45	41.83	36.32	40.81	21.08	26.52	
Mass of Moisture (g)	18.99	15.62	14.77	21.04	18.56	21.63	5.80	7.35	
Moisture Content (%)	44.2	46.4	48.5	50.3	51.1	53.0	27.5	27.7	2

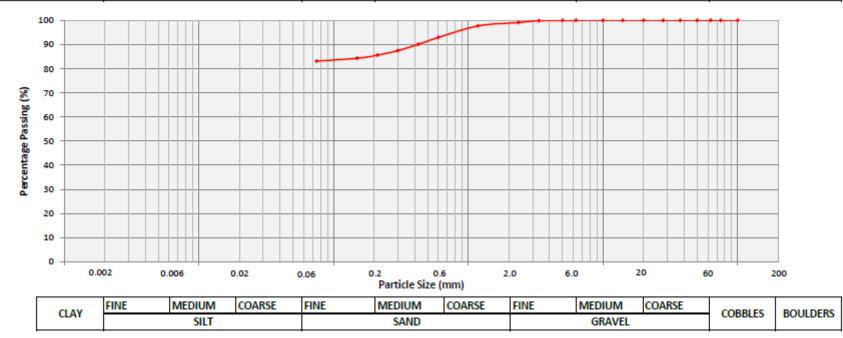
PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN17

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 17	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:		JOB REF:	GCL/TGA-342/12	DATE TESTED:	14.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1095


TP17-18A

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN17(TP17-18A)MN18	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	LEAN CLAY with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	1.7M	SAMPLE No.:	1192


TP17-18B

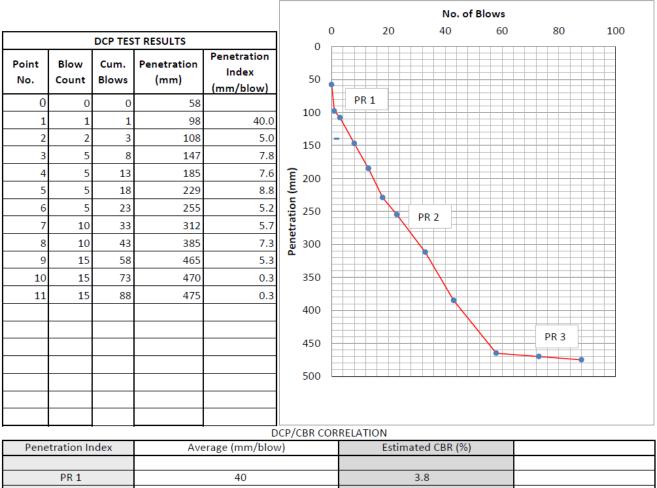
PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN17(TP17-18B)MN18	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	LEAN CLAY with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1193


TP17-18C

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN1(TP17-18C)MN18	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	SILT with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1194

TP17-18D

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN17(TP17-18D)MN18	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	LEAN CLAY	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1195



DCP - CBR CORRELATION

MN17

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 17	Date of Test:	06.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1095

PR 1	40	3.8	
PR 2	6	43.2	
PR 3	0.3	2001.2	

Test By: LUCAS

ANGLE POINT BEARING CAPACITY

MN17

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 17							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012		
DEPTH:	2.0M		2.0M LOCATION: EAS		JOB No.:	GCL/TGA_342/12		
MATERIAL DESCRIPTION: SANDY ELASTIC SILT Sample No.: 1095					1095			

LABORATORY TEST RESULTS

SHEARBOX		DENSITY	
$C(kN/m^2) =$	23	γ (kg/m ³) = 1804	
ø (°) =	20	γ(kN/m ³) = 17.69	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
Whitlow. R	N _q = 6.40	
Basic Soil Mech.	N _y = 2.87	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 17.69 x 2.0 x 6.40) + (0.4 x 17.69 x 1.0 x 2.87)	645 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 645/3.0	215 kN/m ²

Calculations By: B.K.

TP17-18A

CALCULATION OF SAFE BEARING CAPACITY: MN17 (TP17-18A) MN18							
PROJECT: PROPOSED POWERLINE			SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013	
DEPTH: 2.0M			LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03	
MATERIAL DESC	SANDY LEAN CLA	Y		Sample No.:	1192		

LABORATORY TEST RESULTS							
SHEARBOX		DENSITY					
$C(kN/m^2) =$	23	γ (kg/m ³) = 1794					
ø (°) =	21	γ (kN/m ³) = 17.60					

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
	N _q = 7.07	
Whitlow. R Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 17.60 x 2.0 x 7.07) + (0.4 x 17.60 x 1.0 x 3.42)	696 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 696/3.0	232 kN/m ²

Calculations By: B.K.

TP17-18B

CALCULATION OF SAFE BEARING CAPACITY: MN17 (TP17-18B) MN18							
PROJECT:			SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013	
DEPTH:			LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03	
MATERIAL DESCRIPTION:		LEAN CLAY WITH	I SAND		Sample No.:	1193	

LABORATORY TEST R	ESULTS		
SHEARBOX		DENSITY	
$C(kN/m^2) =$	27	γ (kg/m³) = 1912	
ø (°) =	23	y (kN/m ³) = 18.75	

CALCULATIONS	RESULTS
Ultimate Bearing Capacity	
q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
Bearing Capacity Factors : Meyerhof's Analyses	
N _c = 18.05	
N _q = 8.66	
N _y = 4.82	
The Ultimate Bearing Capacity of a Pad Foundation	
B(m)= 1.0	
Z (m)= 0.3	
q _f = (1.3 x 27 x 18.05) + (0.8 x 18.75 x 0.3 x 8.66) + (0.4 x 18.75 x 1.0 x 4.82)	709 kN/m ²
The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
q _s = 709/3.0	236 kN/m ²
	Ultimate Bearing Capacity $q_t = 1.3 cNc + 0.8 \gamma ZNq + 0.4 \gamma BN\gamma$ Bearing Capacity Factors : Meyerhof's Analyses $N_c = 18.05$ $N_q = 8.66$ $N_y = 4.82$ The Ultimate Bearing Capacity of a Pad Foundation B(m) = 1.0 Z(m) = 0.3 $q_t = (1.3 \times 27 \times 18.05) + (0.8 \times 18.75 \times 0.3 \times 8.66) + (0.4 \times 18.75 \times 1.0 \times 4.82)$ The Safe Bearing Capacity of the foundation is : (Fs = 3.0)

Calculations By: B.K.

TP17-18C

CALCULATION OF SAFE BEARING CAPACITY: MN17 (TP17-18C) MN18							
PROJECT:	PROJECT: PROPOSED POWERLINE			NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013	
DEPTH: 2.0M			LOCATION: EA	EASTERN	JOB No.:	GCL/NC_356/03	
MATERIAL DESCRIPTION: SAM		SANDY ELASTIC	SILT		Sample No.:	1098	

LABORATORY TEST R	ESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	23	γ (kg/m ³) = 1873
ø (°) =	19	γ(kN/m ³) = 18.37

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 13.93	
	N _q = 5.80	
Whitlow. R Basic Soil Mech.	N _γ = 2.40	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 13.93) + (0.8 x 18.37 x 2.0 x 5.80) + (0.4 x 18.37 x 1.0 x 2.40)	605 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 605/3.0	202 kN/m ²

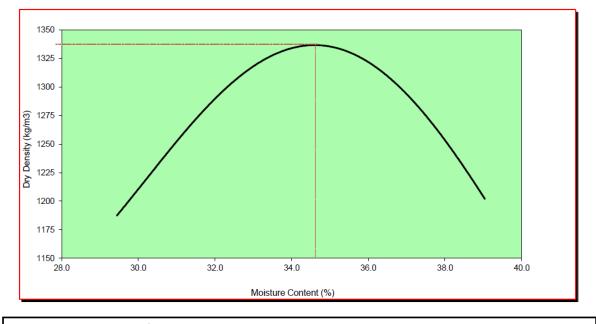
Calculations By: B.K.

TP17-18D

CALCULATION OF SAFE BEARING CAPACITY: MN17 (TP17-18D) MN18							
PROJECT:	ROJECT: PROPOSED POWERLINE			NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013	
DEPTH:	DEPTH: 2.0M		LOCATION: EASTERN	JOB No.:	GCL/NC_356/03		
MATERIAL DESCRIPTION: SANDY LEAN C			Y		Sample No.:	1195	

LABORATORY TEST	RESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	23	γ (kg/m ³) = 1885
ø (°) =	20	γ (kN/m ³) = 18.49

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
	N _q = 6.40	
Whitlow. R Basic Soil Mech.	N _γ = 2.87	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 18.49 x 2.0 x 6.40) + (0.4 x 18.49 x 1.0 x 2.87)	654 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 654/3.0	218 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN17

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1095
Material Description:	n: SANDY ELASTIC SILT		Sample Ref:	TP MN 17		Date received:	09.12.2012
Moisture Ado	dition	200cc	250cc	300cc	350cc	400cc	450cc
Mass of Mou	ld+Base+Soil	5532	5664	5763	5797	5756	5666
Mass of Mould+Base 3995			3995	3995	3995	3995	3995
Mass of Compacted Soil 1537			1669	1768	1802	1761	1671
Bulk Density (Kgs/m ³) 1537		1537	1669	1768	1802	1761	1671
Tin No.		G18	G22	G31	G43	G23	G35
Weight Wet Soil 299.0		299.0	280.0	228.0	303.0	298.0	406.0
Weight of Dry Soil 231.0		213.0	171.0	224.0	217.0	292.0	
Weight of Water 68.0		67.0	57.0	79.0	81.0	114.0	
Moisture Content (%) 29.4		31.5	33.3	35.3	37.3	39.0	

Maximum Dry Density (Kg/m³): <u>1338</u>

Optimum Moisture Content (%): <u>34.8%</u>

Tested By: STEVE

Г

Date Reported: 25.01.2013

Checked By: WK

٦

CHEMICAL ANALYSIS

Angle Point MN17				
Depth	2.0m			
рН	8.62			
Chloride(%) mg/l	0.46			
Sulphate (mg/l)	0.002			

TP17-18A				
Depth	2.0m			
рН	8.10			
Chloride(%) mg/l	0.002			
Sulphate (mg/l)	0.023			

TP17-18B				
Depth	2.0m			
рН	7.58			
Chloride(%) mg/l	0.014			
Sulphate (mg/l)	0.038			

TP17-18C				
Depth	2.0m			
рН	7.59			
Chloride(%) mg/l	0.018			
Sulphate (mg/l)	0.030			

TP17-18D				
Depth	2.0m			
рН	7.82			
Chloride(%) mg/l	0.015			
Sulphate (mg/l)	0.035			

INSITU DENSITY TEST

TP17-18A			
Depth (m)	2.0		
Bulk density (kg/m3)	1461		
Moisture Content (%)	21.8		
Dry Density (kg/m3)	1199		
Maximum Dry Density (kg/m3)	1367		
Relative Compaction (%)	87.7		

ANGLE POINT 17 LOG

JOB REF:		GCL/NCE_342/12
	-	MN 17
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	0.9	Brownish Red SILT with Sand
	2.0	Brown Silty SAND with Gravel
V		

TEST POINT 17-18A, 17-18B, 17-18C, 17-18D LOGS

					GCL/NCE_356/03	DATE: 23 - 28.02.2013			
5	SITE: NANYUKI-ISIOLO-MERU				LOGGED BY: STEVE		STEVE		
	MN17 (TP17-18A) MN18			MN17 (TP17-18B) MN18			MN17 (TP17-18C) MN18		
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
0 0.5 1			Dark Grey CLAY (Black Cotton Soil) Grey Elastic SILT with Sand			Brown Lean CLAY with Sand	× × ×	1.2	Reddish Brown Sandy CLAY Brown SILT with Sand
2	- A	2.0		· · · · · · · · · · · · · · · · · · ·	2.0		× × × × × ×		

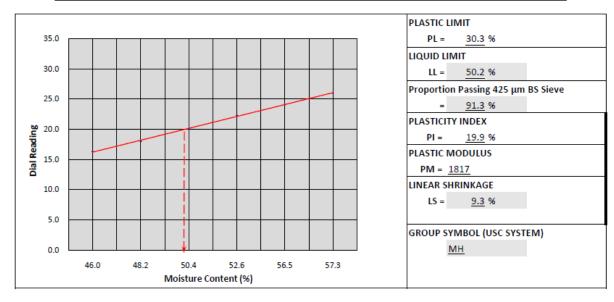
PR	OJECT:	NANYUKI-ISIOLO-MERU POWERLINE			
5	SITE:	NANYUKI-ISIOLO-MERU			
		MN17	(TP17-18D) MN18		
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION		
0 .5 1 1.5 2	* × × × × × × × × × × × × × × × × × × ×	2.0	Brownish Red Elastic SILT with Sand		
2.5					

SEGMENT 17

ATTERBERG LIMITS BS 1377 - 2: 1990

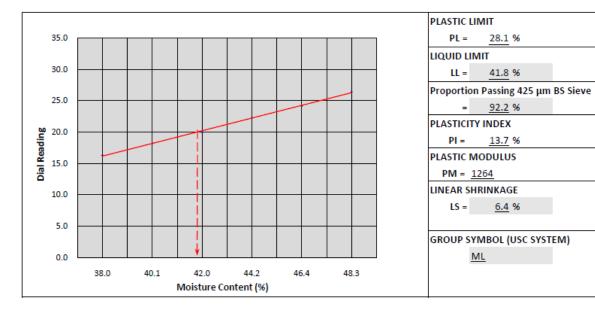
MN18

Project:	PROPOSED POWERLINE	Site/Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1096
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012


			LIQUID	LIMIT			PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.0	22.2	24.3	26.1	-	-	
Tin No	25	59	8	45	20	15	42	30	
Mass of Wet Soil (g)	34.79	36.22	34.92	41.24	45.74	37.17	17.61	20.80	
Mass of Dry Soil (g)	25.54	26.17	24.89	28.94	31.63	25.39	14.72	17.36	
Mass of Moisture (g)	9.25	10.05	10.03	12.30	14.11	11.78	2.89	3.44	
Moisture Content (%)	36.2	38.4	40.3	42.5	44.6	46.4	19.6	19.8	19

TP18-19A

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN18 (TP18-19A)MN19	Date Received:	06.03.2013
Material Description:	ELASTIC SILT with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1196
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	19.03.2013

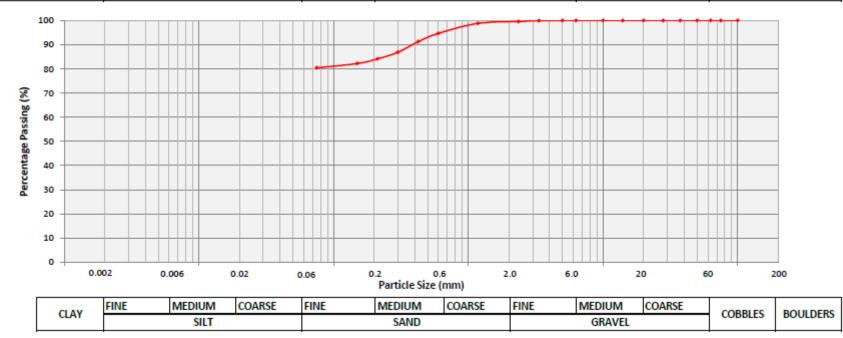

				LIQUID	LIMIT			PLASTIC LIMIT		
Test No.		1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (n	ım)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (m	m)	16.3	18.0	20.1	22.3	24.1	26.0	-	-	
Tin No		21	3	54	62	52	35	22	18	
Mass of Wet Soil (g)	48.21	42.33	47.92	52.14	45.85	56.79	30.17	33.12	1
Mass of Dry Soil (g)	33.02	28.56	31.87	34.17	29.30	36.10	23.17	25.40]
Mass of Moisture (g)	15.19	13.77	16.05	17.97	16.55	20.69	7.00	7.72	
Moisture Content (9	%)	46.0	48.2	50.4	52.6	56.5	57.3	30.2	30.4	3

TP18-19B

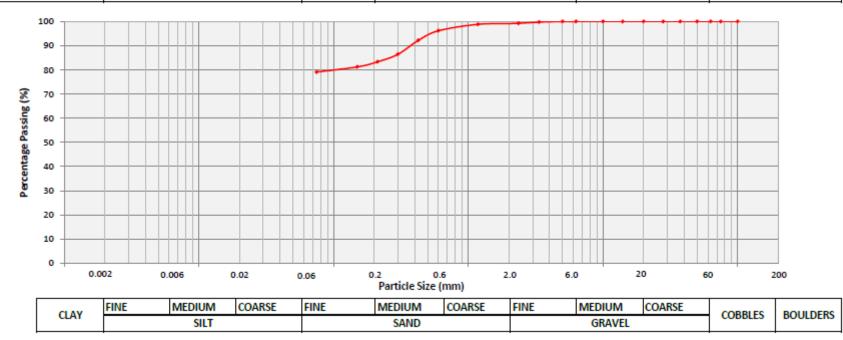
Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN18 (TP18-19B)MN19	Date Received:	06.03.2013
Material Description:	SILT with Sand	Job Reference:	GCL/NAS-356/13	Sample No.:	1197
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	19.03.2013


		LIQUID LIMIT				PL	/IT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.2	20.0	22.3	24.2	26.4	-	-]
Tin No	77	45	52	39	17	24	38	23	
Mass of Wet Soil (g)	41.08	49.04	51.16	45.06	49.41	57.90	23.91	30.06	
Mass of Dry Soil (g)	29.77	35.00	36.03	31.25	33.75	39.04	18.68	23.45]
Mass of Moisture (g)	11.31	14.04	15.13	13.81	15.66	18.86	5.23	6.61	
Moisture Content (%)	38.0	40.1	42.0	44.2	46.4	48.3	28.0	28.2	2

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN18

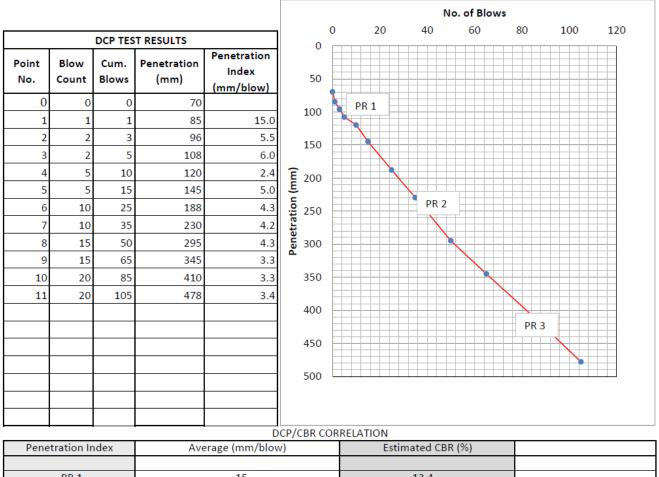
PROJECT:	PROPOSED POWERLINE	LOCATION	MN 18	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	14.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1096


TP18-19A

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN18(TP18-19A)MN19	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	ELASTIC SILT with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1196

TP18-19B

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN18(TP18-19B)MN19	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	SILT with Sand	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1197



DCP - CBR CORRELATION

MN18

NESHCONSULT ENGINEERING

Site: NANYUKI-ISIOLO-MERU Job No.: GCL/TGA-342/12 Depth: 2.0M Sample No. 1096	Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 18	Date of Test:	07.12.2012
	\$ ite:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1096

Average (mm/blow)	Estimated CBR (%)	
15	13.4	
4.2	68.3	
3.3	93.0	
-	15 4.2	15 13.4 4.2 68.3

Test By: LUCAS

ANGLE POINT BEARING CAPACITY

MN18

		CALCU	LATION OF	SAFE BEARING CAPACI	TY: TP MN 18	
PROJECT: PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-M				NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH:	2.0M LOC		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12
MATERIAL DESCRIPTION: SANDY LEAR		CLAY		Sample No.:	1096	

LABORATORY TEST RESULTS

			_
SHEARBOX		DENSITY	
$C(kN/m^2) =$	23	y (kg/m ³) = 1794	
ø (°) =	21	γ (kN/m ³) = 17.60	
	<u>SHEARBOX</u> C(kN/m ²) =	$\frac{\text{SHEARBOX}}{C(\text{kN/m}^2)} = 23$	$C(kN/m^2) = 23$ $\gamma (kg/m^3) = 1794$

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R	$N_q = 7.07$	
Basic Soil Mech.	N _Y = 3.42	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 17.60 x 2.0 x 7.07) + (0.4 x 17.60 x 1.0 x 3.42)	696 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 696/3.0	232 kN/m ²

Calculations By: B.K.

Checked: WK

TP18-19A

CALCULATION OF SAFE BEARING CAPACITY: MN18 (TP18-19A) MN19						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESCRIPTION: SANDY ELASTIC S		SILT		Sample No.:	1196	

LABORATORY TEST RESULTS				
SHEARBOX		DENSITY		
$C(kN/m^2) =$	30	γ (kg/m³) = 2020		
ø (°) =	24	γ (kN/m ³) = 19.82		

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 19.32	
	N _q = 9.60	
Whitlow. R Basic Soil Mech.	N _γ = 5.72	
Design & Construction	The Ultimate Bearing Capacity of a Pad Foundation	
	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 30 x 19.32) + (0.8 x 19.82 x 2.0 x 9.60) + (0.4 x 19.82 x 1.0 x 5.72)	1103 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 1103/3.0	368 kN/m ²

Calculations By: B.K.

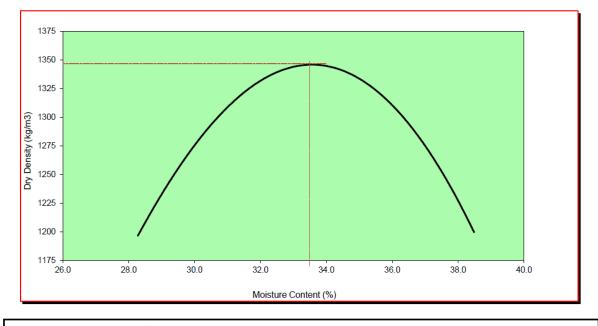
TP18-19B

CALCULATION OF SAFE BEARING CAPACITY: MN18 (TP18-19B) MN19								
PROJECT:	PROPOSED	ROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU DATE RECEIVED: 06.03.2013						
DEPTH: 2.0M LOCATION: EASTERN					JOB No.:	GCL/NC_356/03		
MATERIAL DESCRIPTION: SILT WITH SAND				Sample No.:	1197			

LABORATORY TEST R	ESULTS	
SHEARBOX		<u>DENSITY</u>
$C(kN/m^2) =$	23	γ (kg/m³) = 1866
ø (°) =	21	γ (kN/m ³) = 18.31

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
	N _q = 7.07	
Whitlow. R Basic Soil Mech.	N _γ = 3.42	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 18.31 x 2.0 x 7.07) + (0.4 x 18.31 x 1.0 x 3.42)	705 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 705/3.0	235 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN18

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M	
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1096	
Material Description:	SANDY LEAN CLAY	Sample Ref: TP MN 18			Date received:	09.12.2012		
Moisture Ado	dition	150cc	200cc	250cc	300cc	350cc	400cc	
Mass of Mou	ld+Base+Soil	5529	5665	5767	5804	5752	5657	
Mass of Mou	ld+Base	3995	3995	3995	3995	3995	3995	
Mass of Com	pacted Soil	1534	1670	1772	1809	1757	1662	
Bulk Density	(Kgs/m ³)	1534	1670	1772	1809	1757	1662	
Tin No.		G49	G09	G20	G17	G36	G42	
Weight Wet S	Soil	213.2	229.2	255.0	270.4	255.4	247.2	
Weight of Dry	/ Soil	166.2	176.1	192.3	200.6	186.9	178.5	
Weight of Wa	iter	47.0	53.1	62.7	69.8	68.5	<mark>68.7</mark>	
Moisture Cor	ntent (%)	28.3	30.2	32.6	34.8	36.7	38.5	

Maximum Dry Density (Kg/m³): <u>1345</u>

Optimum Moisture Content (%): <u>33.4%</u>

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN18					
Depth	2.0m				
рН	7.28				
Chloride(%) mg/l	-				
Sulphate (mg/l)					

TP18-19A					
Depth	2.0m				
рН	7.14				
Chloride(%) mg/l	0.013				
Sulphate (mg/l)	0.018				

TP18-19B					
Depth	2.0m				
рН	7.05				
Chloride(%) mg/l	0.015				
Sulphate (mg/l)	0.013				

INSITU DENSITY TEST

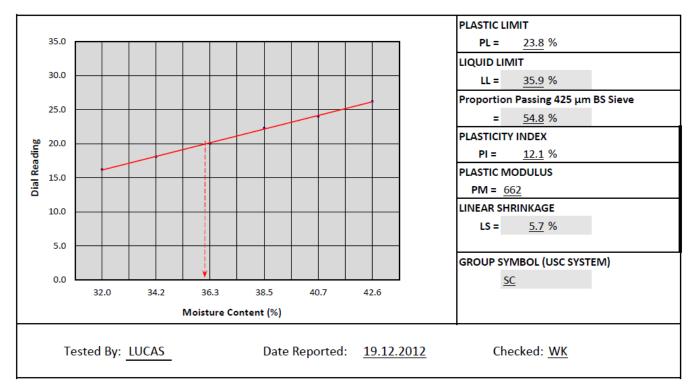
	TP18-19A				
Depth (m)	2.0				
Bulk density (kg/m3)	1726				
Moisture Content (%)	30.1				
Dry Density (kg/m3)	1326				
Maximum Dry Density (kg/m3)	1513				
Relative Compaction (%)	87.7				

ANGLE POINT 18 LOG

DATE	i:	03.09.12.2012
LOGGED	BY:	LUCAS
		MN 18
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
	1.0	Brownish Red SILT with Sand
~	2.0	Brown Silty SAND with Gravel
V		

JOB REF:		GCL/NCE_356/03	DAT		23 - 28.02.2013 STEVE	
	MNAC	(TD10.104) MN10	LOGGEL			
	DEPTH	(TP18-19A) MN19	MN18 (TP18-19B) MN19 DEPTH			
LEGEND	(m)	MATERIAL DESCRIPTION	LEGEND	(m)	MATERIAL DESCRIPTION	
	1.2	Brownish Red Sandy SILT		1.2	Brownish Red Sandy SILT	
x x	2.0		- · × _ · × - · × _ · × - · × _ · × - · × _ · ×	2.0	Brownish Red Elastic SILT with Sar and Gravel	
V						

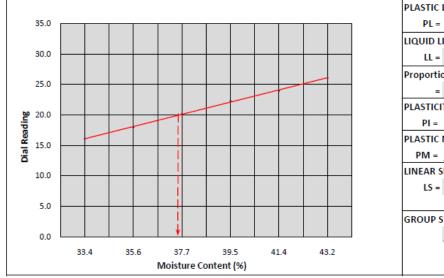
TEST POINT 18-19A, 18-19B LOGS


SEGMENT 18

ATTERBERG LIMITS BS 1377 - 2: 1990

MN19

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	CLAYEY SAND WITH GRAVEL	Job Reference:	GCL/TGA-342/12	Sample No.:	1097
Sampled By:	GCL	Depth:	0.3M	Date Tested:	18.12.2012


		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.0	22.3	24.0	26.2	-	-	
Tin No	21	18	19	58	47	53	62	75	
Mass of Wet Soil (g)	56.72	59.09	55.57	63.31	55.86	50.25	16.11	20.43	
Mass of Dry Soil (g)	42.97	44.03	40.76	45.71	39.70	35.24	13.02	16.49	
Mass of Moisture (g)	13.75	15.06	14.81	17.60	16.16	15.01	3.09	3.94	
Moisture Content (%)	32.0	34.2	36.3	38.5	40.7	42.6	23.7	23.9	23

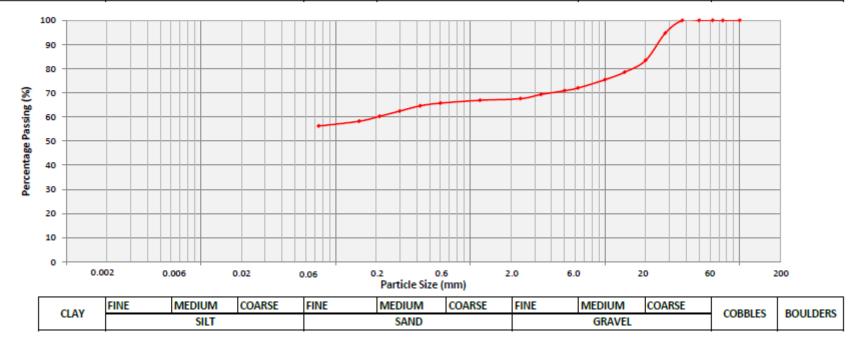
TP19-20

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN19 (TP19-20)MN20	Date Received:	06.03.2013
Material Description:	Silt with Sand & Gravel	Job Reference:	GCL/NAS-356/13	Sample No.:	1198
Sampled By:	GEO CON	Depth:	1.9M	Date Tested:	19.03.2013

		LIQUID LIMIT					PLASTIC LIM		1IT	
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (n	nm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (m	nm)	16.1	18.0	20.2	22.3	24.0	26.1	-	-	
Tin No		52	16	24	18	47	59	64	12	
Mass of Wet Soil (g)	55.92	50.76	44.31	60.98	64.00	52.28	28.10	32.18	
Mass of Dry Soil	g)	41.92	37.43	32.17	43.70	45.26	36.51	22.41	25.62	
Mass of Moisture (g)	14.00	13.33	12.14	17.28	18.74	15.77	5.69	6.56	
Moisture Content	%)	33.4	35.6	37.7	39.5	41.4	43.2	25.4	25.6	2

PLASTIC	LIMIT	
PL =	25.5 %	
LIQUID L	IMIT	
LL =	37.5 %	
Proporti	on Passing 425 µm	BS Sieve
=	<u>64.7</u> %	
PLASTIC	TY INDEX	
PI =	<u>12.0</u> %	
PLASTIC	MODULUS	
PM =	777	
LINEAR S	HRINKAGE	
LS =	<u>7.1</u> %	
GROUP	YMBOL (USC SYST	EM)
	ML	
1		

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN19

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 19	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	CLAYEY SAND WITH GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	14.12.2012
SAMPLED BY:	GCL	DEPTH:	0.3M	SAMPLE No.:	1097

TP19-20

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN19(TP19-20)MN20	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	SILT with Sand and Gravel	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	1.9M	SAMPLE No.:	1198

DCP - CBR CORRELATION

MN19

ANGLE POINT BEARING CAPACITY

MN19

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 19						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012	
DEPTH:	0.3M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DESCRIPTION: CLAYEY SAN		CLAYEY SAN	D WITH GRAV	/EL	Sample No.:	1097	

LABORATORY TEST RESULTS

SHEARBOX		DENSITY	
$C(kN/m^2) =$	27	γ (kg/m ³) = 1912	
ø (°) =	23	γ(kN/m ³) = 18.75	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
Whitlow. R	N _q = 8.66	
Basic Soil Mech. Tomlinson.	N _Y = 4.82	
M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 0.3	
	q _f = (1.3 x 27 x 18.05) + (0.8 x 18.75 x 0.3 x 8.66) + (0.4 x 18.75 x 1.0 x 4.82)	709 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 709/3.0	236 kN/m ²

Calculations By: B.K.

Checked: <u>WK</u>

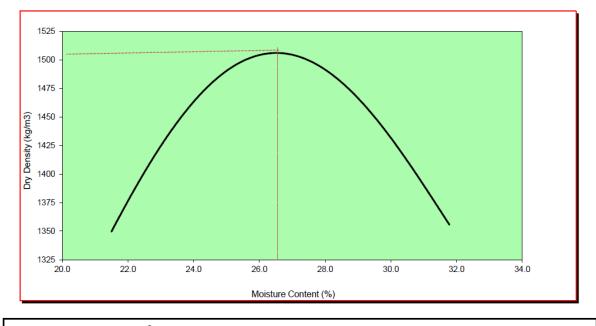
TP19-20

CALCULATION OF SAFE BEARING CAPACITY: MN19 (TP19-20) MN20								
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013		
DEPTH:	1.0M	1.0M		EASTERN	JOB No.:	GCL/NC_356/03		
MATERIAL DESCRIPTION: SILT WITH GRA		AVEL AND SAN	D	Sample No.:	1198			

LABORATORY TEST R	RESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	29	γ (kg/m ³) = 1980
ø (°) =	22	γ (kN/m ³) = 19.43

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
	N _q = 7.82	
Whitlow. R Basic Soil Mech.	N _γ = 4.07	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 1.0	
	q _f = (1.3 x 29 x 16.88) + (0.8 x 19.43 x 1.0 x 7.82) + (0.4 x 19.43 x 1.0 x 4.07)	790 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 790/3.0	263 kN/m ²

Calculations By: B.K.


Checked: <u>WK</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN19

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	0.3M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1097
Material Description:	CLAYEY SAND WITH GRAVEL	Sample Ref: TP MN 19			Date received:	09.12.2012	
Moisture Add	dition	250cc	300cc	350cc	400cc	450cc	500cc
Mass of Mould+Base+Soil		5634	5768	5860	5912	5868	5782
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1639	1773	1865	1917	1873	1787
Bulk Density	(Kgs/m³)	1639	1773	1865	1917	1873	1787
Tin No.		G01	G15	G26	G37	G41	G53
Weight Wet S	Soil	262.8	297.8	293.7	305.0	293.9	303.5
Weight of Dry	/ Soil	216.3	241.6	234.6	239.4	226.8	230.3
Weight of Wa	iter	46.5	56.2	59.1	<mark>65.6</mark>	67.1	73.2
Moisture Cor	ntent (%)	21.5	23.3	25.2	27.4	29.6	31.8

Maximum Dry Density (Kg/m³): <u>1510</u>

Optimum Moisture Content (%): <u>26.6%</u>

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN19					
Depth	0.3m				
рН	7.36				
Chloride(%) mg/l	0.32				
Sulphate (mg/l)					

TP19-20					
Depth	2.0				
рН	7.87				
Chloride(%) mg/l	0.014				
Sulphate (mg/l)	0.032				

ANGLE POINT 19 LOG

PR	OJECT:	N AN	YUKI-ISIOLO-MERU POWERLINE
S	SITE:		N ANYUKI · ISIOLO · MERU
			MN 19
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
0			Dark Grey SILT
	A	0.3	
0.5	$\overline{\mathbf{v}}$		Grey Fragmented ROCKstrata
1			
1.5			
2			
2.5			

TEST POINT 19-20 LOG

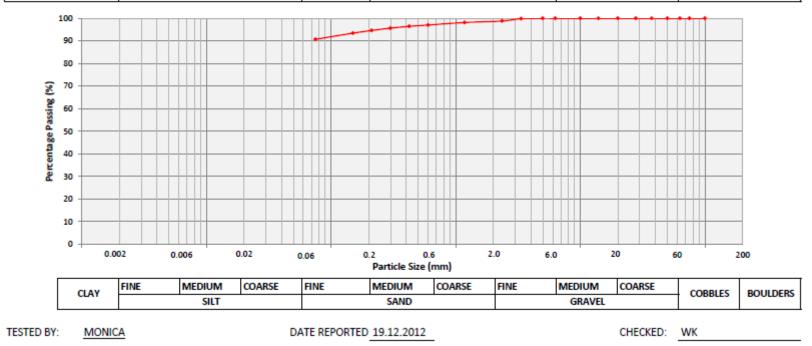
PR	O JECT:	NANYUKI-ISIOLO-MERU POWERLINE				
5	SITE:		NANYUKI-ISIOLO-MERU			
		MN19 (TP19-20) MN20				
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION			
0.5	* × × × × × × × × × × × × × × × × × × ×	1.0	Brownish Red Elastic SILT with Sand			
1.5		1.2	ROCK Cobble and Boulder fractions Brownish Red Elastic SILT with Sand			
2		1.9	ROCK Cobble and Boulder fractions			
2.5						

SEGMENT 19

ATTERBERG LIMITS BS 1377 - 2: 1990

MN20

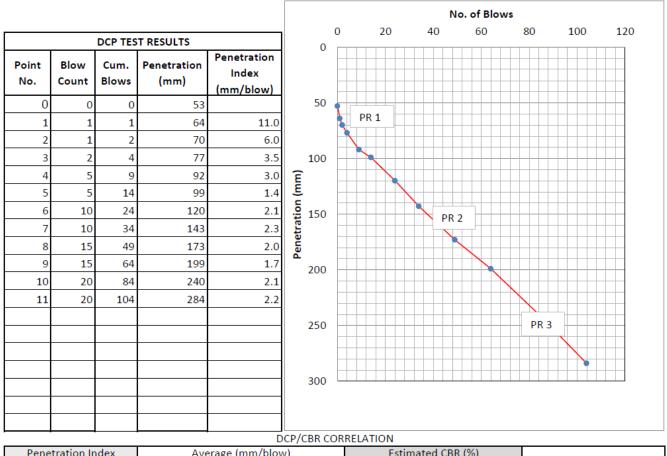
Project: PROPOSED POWERLINE		Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012	
Material Description:	SANDY ELASTIC SILT	Job Reference:	GCL/TGA-342/12	Sample No.:	1098	
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012	


		LIQUID LIMIT						PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.3	18.1	20.2	22.0	24.2	26.0	-	-		
Tin No	70	24	20	45		24	10	47		
	72	21	26	45	35	21	10	47		
Mass of Wet Soil (g)	55.96	46.85	48.27	63.31	55.86	50.25	34.78	29.08		
Mass of Dry Soil (g)	37.26	30.82	31.33	35.09	29.36	34.23	26.90	22.47		
Mass of Moisture (g)	18.70	16.03	16.94	28.22	26.50	16.02	7.88	6.61		
(8)										

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN20

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 20	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY ELASTIC SILT	JOB REF:	GCL/TGA-342/12	DATE TESTED:	14.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1098



DCP - CBR CORRELATION

MN20

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 20	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1098

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	11	19.9	
PR 2	2.8	114.7	
PR 3	2.1	165.8	

Test By: LUCAS

Checked: WK

ANGLE POINT BEARING CAPACITY

MN20

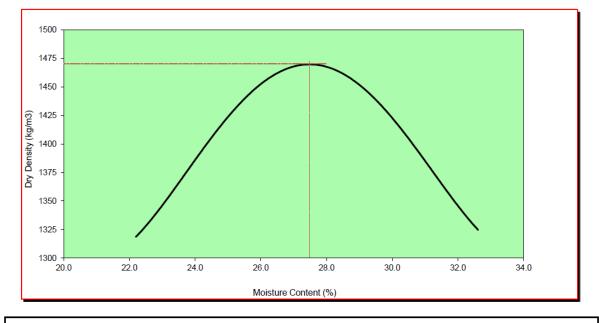
	CALCULATION OF SAFE BEARING CAPACITY: TP MN 20							
PROJECT:	OJECT: PROPOSED POWERLINE			NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012		
DEPTH:	EPTH: 2.0M		2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12
MATERIAL DE	MATERIAL DESCRIPTION: SANDY ELA				Sample No.:	1098		

LABORATORY TEST RESULTS

			_
SHEARBOX		DENSITY	
$C(kN/m^2) =$	23	γ (kg/m ³) = 1873	
ø (°) =	19	γ (kN/m ³) = 18.37	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 13.93	
Whitlow. R	N _q = 5.80	
Basic Soil Mech.	N _y = 2.40	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 13.93) + (0.8 x 18.37 x 2.0 x 5.80) + (0.4 x 18.37 x 1.0 x 2.40)	605 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 605/3.0	202 kN/m ²

Calculations By: B.K.


Checked: <u>WK</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN20

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU	Job Ref.:	GCL/TGA-342/	12	Sample No.:	1098	
Material Description:	SANDY ELASTIC SILT	Sample Ref: TP MN 20			Date received:	09.12.2012	
Moisture Add	dition	150cc	200cc	250cc	300cc	350cc	400cc
Mass of Mould+Base+Soil		5606	5740	5841	5877	5830	5752
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1611	1745	1846	1882	1835	1757
Bulk Density (Kgs/m ³)		1611	1745	1846	1882	1835	1757
Tin No.		G36	G61	G53	G03	G15	G36
Weight Wet S	ioil	257.1	274.3	252.6	274.9	289.9	289.9
Weight of Dry Soil 210.		210.4	220.5	199.7	214.3	222.3	218.6
Weight of Water 46.7		53.8	52.9	60.6	67.6	71.3	
Moisture Cor	Moisture Content (%) 22.2		24.4	26.5	28.3	30.4	32.6

Maximum Dry Density (Kg/m³): <u>1470</u>

Optimum Moisture Content (%): <u>27.4%</u>

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN20						
Depth	2.0m					
рН	8.3					
Chloride(%) mg/l	0.61					
Sulphate (mg/l)	0.002					

TP20-21A						
Depth	1.9m					
рН	7.56					
Chloride(%) mg/l	0.010					
Sulphate (mg/l)	0.033					

ANGLE POINT 20 LOG

JOB REF:		GCL/NCE_342/12
	-	MN 20
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	1.0	Greyish Brown SILT with Sand
Λ	2.0	Greyish Brown Silty SAND
V		

TEST POINT 20-21 LOG

JOB REF:		GCL/NCE_356/03		
		0 (TP20-21) MN21		
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION		
	1.5	Brownish Red Sandy SILT		
S E	1.9	Grey Waethered rock cobble and boulder fragments		

SEGMENT 20

ATTERBERG LIMITS BS 1377 - 2: 1990

MN21

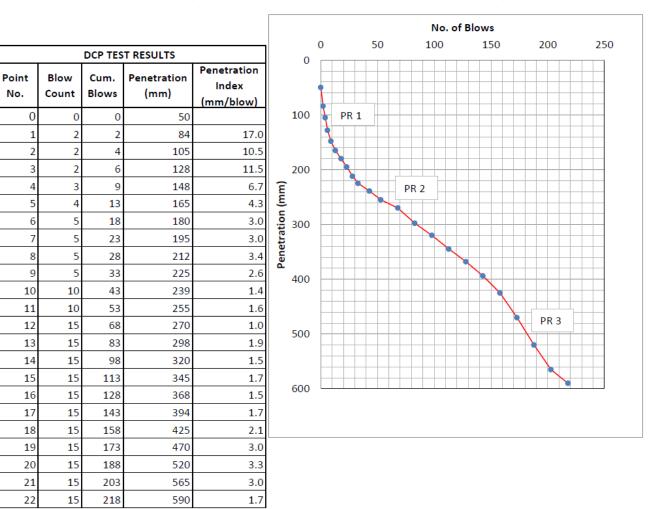
Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY ELASTIC SILT	Job Reference:	GCL/TGA-342/12	Sample No.:	1099
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012

	LIQUID LIMIT					PLASTIC LIMIT			
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.0	18.2	20.1	22.4	24.3	26.0	-	-	
Tin No	24	12	15	19	34	58	51	14	
Mass of Wet Soil (g)	36.07	42.23		40.61		43.97			
Mass of Dry Soil (g)	23.41	27.07	19.90	25.32	29.61	26.73	15.79	18.43	
Mass of Moisture (g)	12.66	15.16	11.58	15.29	18.54	17.24	5.26	6.17	
Moisture Content (%)	54.1	56.0	58.2	60.4	62.6	64.5	33.3	33.5	33

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN21

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 21	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY ELASTIC SILT	JOB REF:	GCL/TGA-342/12	DATE TESTED:	17.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1099



DCP - CBR CORRELATION

MN21

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 21	Date of Test:	06.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1099

	Average (mm/blow)	Estimated CBR (%)	
PR 1	13	16.1	
PR 2	4.4	64.3	
PR 3	1.8	202.0	

Test By: LUCAS

Checked: <u>WK</u>

ANGLE POINT BEARING CAPACITY

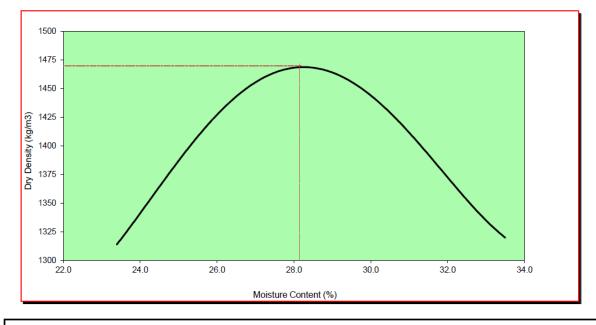
MN21

CALCULATION OF SAFE BEARING CAPACITY: TP MN 21							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012	
DEPTH:	2.0M LC		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DESCRIPTION: SANDY ELASTIC			TIC SILT		Sample No.:	1099	

LABORATORY TEST	RESULTS			
SHEARBOX		DENSITY		
$C(kN/m^2) =$	23	γ (kg/m³) =	1885	
ø (°) =	20	y (kN/m ³) =	18.49	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
Whitlow. R	N _q = 6.40	
Basic Soil Mech.	N _γ = 2.87	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 18.49 x 2.0 x 6.40) + (0.4 x 18.49 x 1.0 x 2.87)	654 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 654/3.0	218 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN21

Project:	PROPOSED POWERLINE NANYUKI-ISIOLO-MERU SANDY ELASTIC SILT		LOCATION:	EASTERN		Depth:	2.0M
Site:			Job Ref.:	GCL/TGA-342/	12	Sample No.:	1099
Material Description:			Sample Ref: TP MN 21			Date received:	09.12.2012
Moisture Ado	dition	200cc	250cc	300cc	350cc	400cc	450cc
Mass of Mould+Base+Soil		5616	5739	5842	5884	5833	5757
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1621	1744	1847	1889	1838	1762
Bulk Density	(Kgs/m ³)	1621	1744	1847	1889	1838	1762
Tin No.		G16	G27	G39	G45	G08	G14
Weight Wet S	Soil	226.3	262.3	272.0	299.0	297.4	291.7
Weight of Dry Soil 183.4		183.4	209.6	214.2	231.6	226.5	218.5
Weight of Water 42.9		52.7	57.8	67.4	70.9	73.2	
Moisture Cor	ntent (%)	23.4	25.1	27.0	29.1	31.3	33.5

Maximum Dry Density (Kg/m³): <u>1468</u>

Optimum Moisture Content (%): <u>28.4%</u>

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN21						
Depth	2.0m					
рН	8.48					
Chloride(%) mg/l	0.78					
Sulphate (mg/l)	0.002					

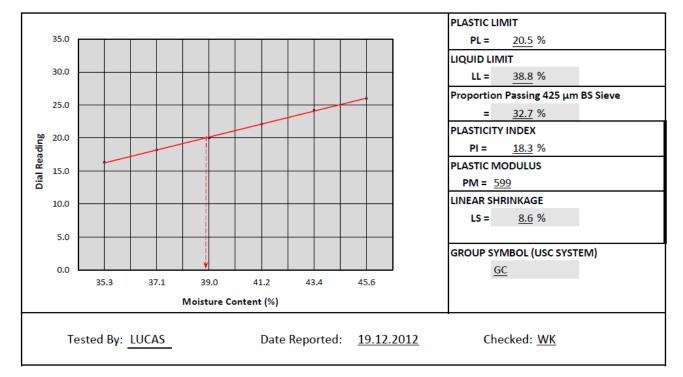
TP21-22					
Depth	1.8m				
рН	8.03				
Chloride(%) mg/l	0.013				
Sulphate (mg/l)	0.042				

ANGLE POINT 21 LOG

DATE	6	03.09.12.2012
LOGGED	BY:	LUCAS
		MN 21
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
	2.0	Dark Brown Elastic SILT with Sand
V		

TEST POINT 21-22 LOG

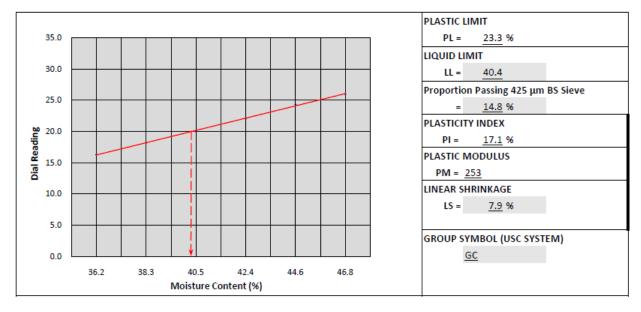
DATE	č:	23 - 28.02.2013
LOGGED	BY:	STEVE
	MN21	(TP21-22) MN22
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
X X X X X X	1.5	Brownish Red Sandy SILT
ġ,Ę	1.8	


SEGMENT 21

ATTERBERG LIMITS BS 1377 - 2: 1990

MN22

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	CLAYEY GRAVEL WITH SAND	Job Reference:	GCL/TGA-342/12	Sample No.:	1100
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012


		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	2	3	4	5	9	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.2	20.0	22.1	24.2	26.0	-	-	
Tin No	21	3	54	62	52	35	22	18	
Mass of Wet Soil (g)	53.11	48.82	50.50	56.68	66.27	55.12	30.59	32.92	
Mass of Dry Soil (g)	39.25	35.61	36.34	40.14	46.21	37.86	25.41	27.30	
Mass of Moisture (g)	13.86	13.21	14.16	16.54	20.06	17.26	5.18	5.62	
Moisture Content (%)	35.3	37.1	39.0	41.2	43.4	45.6	20.4	20.6	20

TP22-23A

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN22 (TP22-23A)MN23	Date Received:	06.03.2013
Material Description:	Clayey GRAVEL	Job Reference:	GCL/NAS-356/13	Sample No.:	1201
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	20.03.2013

			LIQUID	LIMIT			PL	/IT	
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.2	20.0	22.1	24.3	26.0	-	-]
Tin No	35	27	19	8	26	36	29	58	
Mass of Wet Soil (g)	36.05	30.47	32.51	39.16	37.48	40.52	23.58	28.96	1
Mass of Dry Soil (g)	26.47	22.03	23.14	27.50	25.92	27.60	19.14	23.47	1
Mass of Moisture (g)	9.58	8.44	9.37	11.66	11.56	12.92	4.44	5.49]
Moisture Content (%)	36.2	38.3	40.5	42.4	44.6	46.8	23.2	23.4	2

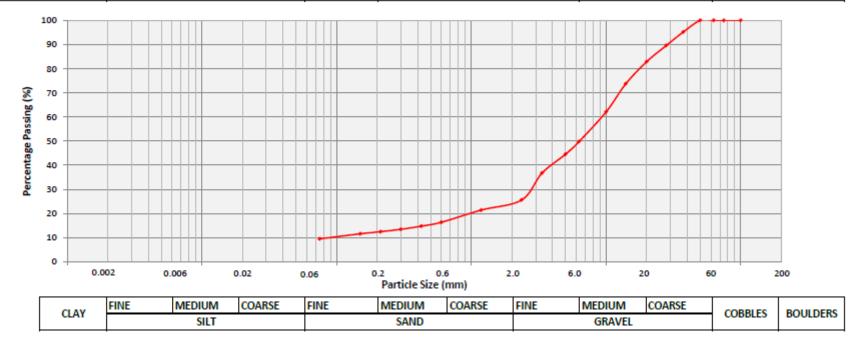


PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN22

NESHCONSULT ENGINEERING

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 22	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	CLAYEY GRAVEL WITH SAND	JOB REF:	GCL/TGA-342/12	DATE TESTED:	17.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1100

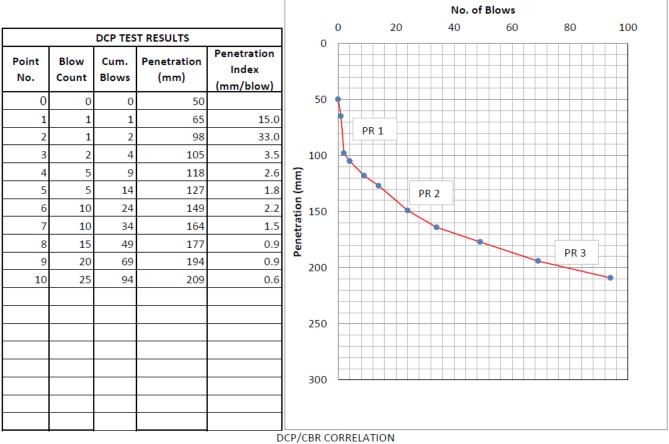


303

TP22-23A

NESHCONSULT ENGINEERING

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN22(TP22-23A)MN23	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	CLAYEY GRAVEL	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1201



DCP - CBR CORRELATION

MN22

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 22	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1100

DCP/CB	R CORRELATION
--------	---------------

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	24	7.3	
PR 2	2.6	126.1	
PR 3	0.8	570.2	

Test By: LUCAS

Checked: <u>WK</u>

ANGLE POINT BEARING CAPACITY

MN22

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 22					
PROJECT:	OJECT: PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU DATE RECEIV			DATE RECEIVED:	09.12.2012	
DEPTH: 2.0M I			LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12
MATERIAL DE	MATERIAL DESCRIPTION: CLAYEY GRA			ND	Sample No.:	1100

LABORATORY TEST RESULTS

SH	IEARBOX		DENSITY		
	$C(kN/m^2) =$	30	y (kg/m ³) =	2020	
	ø (°) =	24	y (kN/m ³) =	19.82	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 19.32	
Whitlow. R	$N_q = 9.60$	
Basic Soil Mech.	N _y = 5.72	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 30 x 19.32) + (0.8 x 19.82 x 2.0 x 9.60) + (0.4 x 19.82 x 1.0 x 5.72)	1103 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 1103/3.0	368 kN/m ²

Calculations By: B.K.

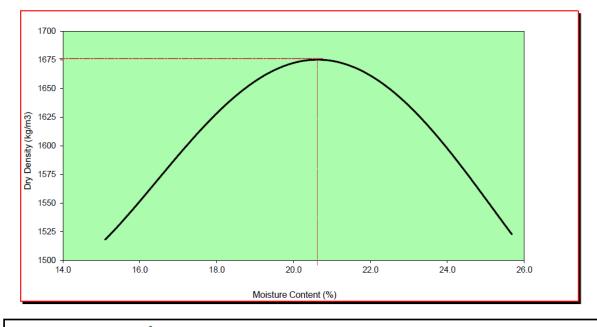
TP22-23A

CALCULATION OF SAFE BEARING CAPACITY: MN22 (TP22-23A) MN23						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
DEPTH:	1.6M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESCRIPTION: CLAYEY GRAVEL					Sample No.:	1201

LABORATORY TEST R	ABORATORY TEST RESULTS				
SHEARBOX		DENSITY			
$C(kN/m^2) =$	28	γ (kg/m ³) = 2054			
ø (°) =	22	γ (kN/m ³) = 20.15			

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
	N _q = 7.82	
Whitlow. R Basic Soil Mech.	N _Y = 4.07	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 1.6	
	q _f = (1.3 x 28 x 16.88) + (0.8 x 20.15 x 1.6 x 7.82) + (0.4 x 20.15 x 1.0 x 4.07)	849 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 849/3.0	283 kN/m ²

Calculations By: B.K.


Checked: <u>WK</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN22

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1100
Material Description:	CLAYEY GRAVEL WITH SAND		Sample Ref: TP MN 22		Date received:	09.12.2012	
Moisture Add	dition	100cc	150cc	200cc	250cc	300cc	350cc
Mass of Moul	ld+Base+Soil	5742	5870	5979	6026	5982	5909
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1747	1875	1984	2031	1987	1914
Bulk Density	(Kgs/m ³)	1747	1875	1984	2031	1987	1914
Tin No.		G04	G16	G39	G51	G11	G43
Weight Wet S	Soil	250.1	261.8	276.6	303.8	275.3	296.1
Weight of Dry	y Soil	217.3	223.4	231.7	249.8	222.4	235.6
Weight of Wa	ater	32.8	38.4	44.9	54.0	52.9	60.5
Moisture Con	ntent (%)	15.1	17.2	19.4	21.6	23.8	25.7

Maximum Dry Density (Kg/m³): <u>1675</u>

Optimum Moisture Content (%): <u>20.6%</u>

Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

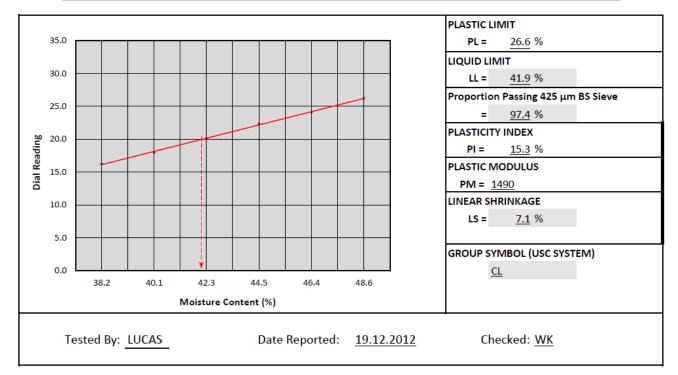
Angle Point MN22		
Depth	2.0m	
рН	6.9	
Chloride(%) mg/l	-	
Sulphate (mg/l)		

TP22-23A				
Depth	2.0m			
рН	7.51			
Chloride(%) mg/l	0.006			
Sulphate (mg/l)	0.026			

TP22-23B				
Depth	1.8m			
рН	7.17			
Chloride(%) mg/l	0.005			
Sulphate (mg/l)				

ANGLE POINT 22 LOG

PR	OJECT:	N AN	YUKI-ISIO LO - MERU POWERLINE			
S	ITE:	N ANYUKI-ISIOLO-MERU				
		MN 22				
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION			
0			Greyish Brown Silty SAND			
0.5		0.3	Brown Lateritic GRAVEL			
1		1.0				
1.5						
2						
2.5						


SEGMENT 22

ATTERBERG LIMITS BS 1377 - 2: 1990

MN23

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1101
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012

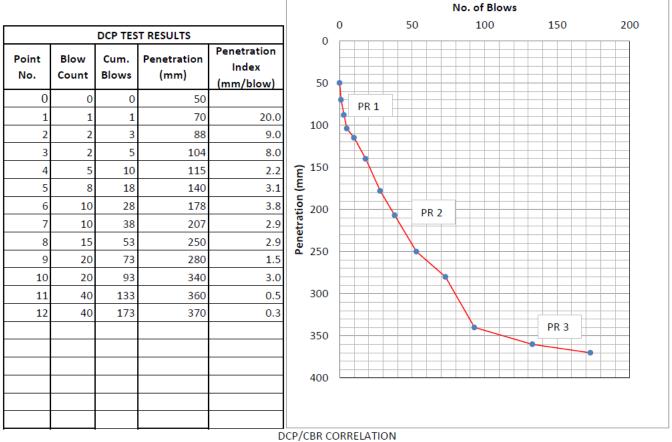
		LIQUID LIMIT					PLASTIC LIMIT		ΛIT
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.0	20.1	22.3	24.1	26.2	-	-	
Tin No	45	15	77	18	24	36	22	11	
Mass of Wet Soil (g)	43.70	33.58	28.92	36.73	44.84	46.14	23.04	17.43	1
Mass of Dry Soil (g)	31.62	23.97	20.32	25.42	30.63	31.06	18.21	13.76	
Mass of Moisture (g)	12.08	9.61	8.60	11.31	14.21	15.08	4.83	3.67	
Moisture Content (%)	38.2	40.1	42.3	44.5	46.4	48.6	26.5	26.7	26

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN23

NESHCONSULT ENGINEERING

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 23	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	17.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1101



DCP - CBR CORRELATION

MN23

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 23	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1101

	DCP/CBR COR	RELATION	
Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	12	17.8	
PR 2	4.3	66.2	
PR 3	0.4	1384.7	

Test By: LUCAS

Checked: WK

<u>/K</u>

ANGLE POINT BEARING CAPACITY

MN23

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 23					
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12
MATERIAL DE	MATERIAL DESCRIPTION: SANDY LEAN CLAY Sample No.: 1101					1101

LABORATORY TEST RESULTS				
SHEARBOX		DENSITY		
$C(kN/m^2) =$	23	γ(kg/m ³) = 1866		
ø (°) =	21	γ(kN/m ³) = 18.31		

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R	N _q = 7.07	
Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 18.31 x 2.0 x 7.07) + (0.4 x 18.31 x 1.0 x 3.42)	705 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 705/3.0	235 kN/m ²

Calculations By: B.K.

Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN23

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1101
Material Description:				TP MN 23	Date received:	09.12.2012	
Moisture Add	dition	250cc	300cc	350cc	400cc	450cc	500cc
Mass of Moul	ld+Base+Soil	5573	5712	5822	5866	5805	5711
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1578	1717	1827	1871	1810	1716
Bulk Density	(Kgs/m³)	1578	1717	1827	1871	1810	1716
Tin No.		G59	G64	G29	G34	G47	G42
Weight Wet S	Soil	213.3	224.1	245.9	266.9	267.8	278.2
Weight of Dry	/ Soil	169.3	174.8	188.6	201.3	198.7	203.5
Weight of Water 44.0		44.0	49.3	57.3	65.6	69.1	74.7
Moisture Con	ntent (%)	26.0	28.2	30.4	32.6	34.8	36.7

Maximum Dry Density (Kg/m³): <u>1418</u>

Optimum Moisture Content (%): <u>31.6%</u>

Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

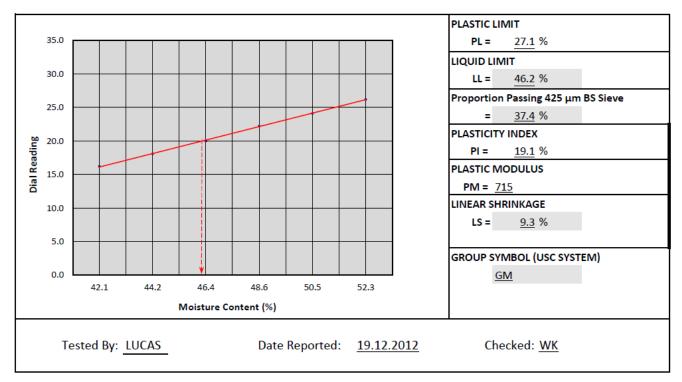
Angle Point MN23					
Depth	2.0m				
рН	8.22				
Chloride(%) mg/l	0.53				
Sulphate (mg/l)	0.001				

TP23-24A					
Depth	1.2m				
рН	7.65				
Chloride(%) mg/l	0.006				
Sulphate (mg/l)	0.020				

TP23-24B					
Depth	1.2m				
рН	6.97				
Chloride(%) mg/l	0.008				
Sulphate (mg/l)	0.018				

ANGLE POINT 23 LOG

JOB REF:		GCL/NCE_342/12
		MN 23
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	0.7	Greyish Brown SILT with Sand
~	2.0	Brown Lateritic GRAVEL
V		


SEGMENT 23

ATTERBERG LIMITS BS 1377 - 2: 1990

MN24

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SILTY GRAVEL WITH SAND	Job Reference:	GCL/TGA-342/12	Sample No.:	1102
Sampled By:	GCL	Depth:	1.0M	Date Tested:	18.12.2012

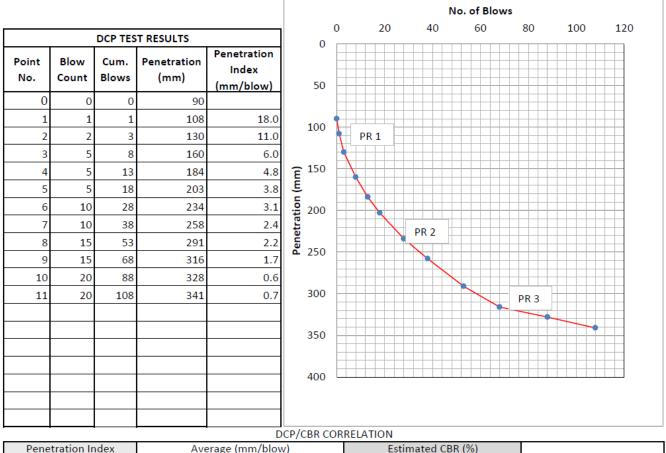
			LIQUID	LIMIT			PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.0	22.2	24.1	26.2	-	-	
Tin No	32	64	53	28	23	16	49	12	
Mass of Wet Soil (g)	33.73	28.94	31.31	36.14	42.28	33.29	18.17	20.87	
Mass of Dry Soil (g)	23.74	20.07	21.38	24.32	28.09	21.86	14.31	16.41	
		0.07	9.93	11.82	14.19	11.43	3.86	4.46	
Mass of Moisture (g)	9.99	8.87	9.95	11.02	14.15	11.15	0.00		

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN24

NESHCONSULT ENGINEERING

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 24	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SILTY GRAVEL WITH SAND	JOB REF:	GCL/TGA-342/12	DATE TESTED:	17.12.2012
SAMPLED BY:	GCL	DEPTH:	1.0M	SAMPLE No.:	1102



DCP - CBR CORRELATION

MN24

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 24	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	1.0M	Sample No.	1102

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	14	14.6	
PR 2	4.5	62.5	
PR 3	1.1	379.3	

Test By: LUCAS

Checked: WK

ANGLE POINT BEARING CAPACITY

MN24

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 24						
PROJECT:	PROJECT: PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU DATE RECEIVED: 09.12.2012						
DEPTH:	DEPTH: 1.0M LOCATION: EASTERN JOB No.: GCL/TGA_342/12						
MATERIAL DE	IATERIAL DESCRIPTION: SILTY GRAVEL WITH SAND Sample No.: 1102						

 $\frac{DENSITY}{\gamma (kg/m^3)} =$

 $\gamma (kN/m^3) =$

1980

19.43

LABORATORY TEST RESULTS SHEARBOX

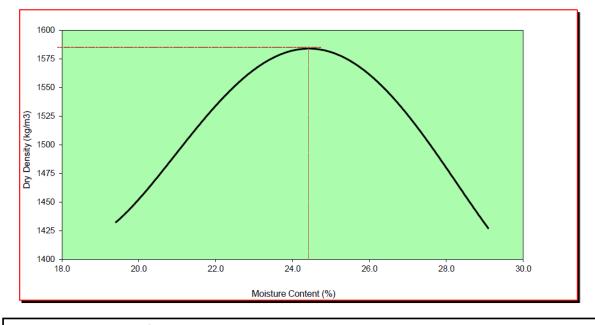
29

22

$C(kN/m^2) =$	
ø (°) =	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
Whitlow. R	$N_q = 7.82$	
Basic Soil Mech.	N _Y = 4.07	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.0	
	q _f = (1.3 x 29 x 16.88) + (0.8 x 19.43 x 1.0 x 7.82) + (0.4 x 19.43 x 1.0 x 4.07)	790 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 790/3.0	263 kN/m ²

Calculations By: <u>B.K.</u>


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN24

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	1.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1102
Material Description:	SILTY GRAVEL WITH SAND		Sample Ref:	TP MN 24	Date received:	09.12.2012	
Moisture Addition		150cc	200cc	250cc	300cc	350cc	400cc
Mass of Mould+Base+Soil		5705	5841	5949	5969	5922	5837
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Com	pacted Soil	l Soil 1710 1846	1954	1974	1927	1842	
Bulk Density	(Kgs/m ³)	1710	1846	1954	1974	1927	1842
Tin No.		G52	G22	G43	G07	G18	G25
Weight Wet S	Soil	276.1	275.9	304.7	300.6	266.9	282.2
Weight of Dry	/ Soil	231.2	226.9	246.3	239.5	209.7	218.6
Weight of Wa	iter	44.9	49.0	58.4	61.1	57.2	63.6
Moisture Cor	itent (%)	19.4	21.6	23.7	25.5	27.3	29.1

Maximum Dry Density (Kg/m³): <u>1592</u>

Optimum Moisture Content (%): <u>24.4%</u>

Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN24							
Depth	1.0m						
рН	8.08						
Chloride(%) mg/l	0.39						
Sulphate (mg/l)	0.001						

TP24-25A							
Depth	0.8m						
рН	8.11						
Chloride(%) mg/l	0.011						
Sulphate (mg/l)	0.042						

ANGLE POINT 24 LOG

DATE	5	03.09.12.2012
LOGGED	BY:	LUCAS
		MN 24
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
	0.2	Dark Grey Silty SAND
4	1.0	Brown Lateritic GRAVEL
V	2.0	

TEST POINT 24-25 LOG

JOB REF:		GCL/NCE_356/03
		4 (TP24-25) MN25
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	0.3	Grey ROCK Boulder and cobble fractions

SEGMENT 24

ATTERBERG LIMITS BS 1377 - 2: 1990

MN25

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SILTY GRAVEL WITH SAND	Job Reference:	GCL/TGA-342/12	Sample No.:	1103
Sampled By:	GCL	Depth:	1.6M	Date Tested:	18.12.2012

	LIQUID LIMIT							PLASTIC LIMIT			
Test No.	1	2	3	4	5	6	1	2	Av.		
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-			
Final Gauge Reading (mm)	16.2	18.1	20.0	22.3	24.0	26.1	-	-			
Tin No	6	16	72	53	57	66	71	5			
Mass of Wet Soil (g)	36.68	40.56	36.96	44.79	46.36	57.49	30.50	28.54			
Mass of Dry Soil (g)	25.37	27.63	24.83	29.72	30.40	37.26	22.36	20.89			
Mass of Moisture (g)	11.31	12.93	12.13	15.07	15.96	20.23	8.14	7.65			
Moisture Content (%)	44.6	46.8	48.9	50.7	52.5	54.3	36.4	36.6	36.		

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN25

NESHCONSULT ENGINEERING

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 25	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SILTY GRAVEL WITH SAND	JOB REF:	GCL/TGA-342/12	DATE TESTED:	17.12.2012
SAMPLED BY:	GCL	DEPTH:	1.6M	SAMPLE No.:	1103

DCP - CBR CORRELATION

MN25

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 25	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	1.6M	Sample No.	1103

											No.		ows				
		DCP TES	T RESULTS		c	0		20		40		60		80	 100)	120
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)													
0	0	0	70		50) -											
1	2	2	95	12.5		•											
2	5	7	113	3.6		1	PR 1										
3	10	17	148	3.5	100	o											
4	10	27	150	0.2	(m												
5	10	37	170	2.0	<u>ل</u>				PR 2								
6	15	52	199	1.9	Penetration (mm))		++									
7	20	72	230	1.6	etra												
8	25	97	255	1.0	200								PF	₹ 3			
					250 300												
Pene	tration Ir	dex	Δυσ	D erage (mm/blow	CP/CBR	COF	RELATIO		timat	ed (`BR /9	(4)	_	_	 		
rene	aaton II	i den	~~~	1400 (mm) 5100	• /			23	ama		.5.()	~/			 		
	PR 1			12.5					1	6.9							
	PR 2			3.4					8	9.5					 		

1.5

Test By: LUCAS

PR 3

Checked: <u>WK</u>

255.0

ANGLE POINT BEARING CAPACITY

MN25

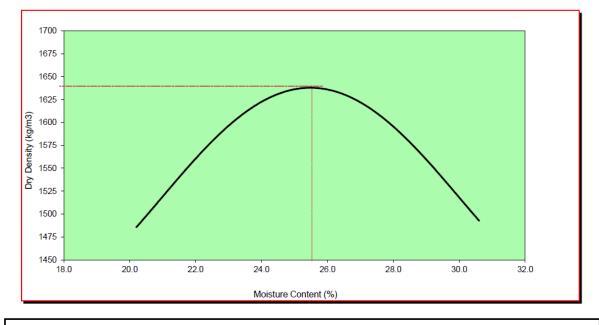
CALCULATION OF SAFE BEARING CAPACITY: TP MN 25								
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012		
DEPTH:	1.6M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12		
MATERIAL DESCRIPTION: SILTY GRAV			EL WITH SANI)	Sample No.:	1103		

LABORATORY TEST RESULTS

LABORATORT TES	TRESOLIS		
SHEARBOX		DENSITY	
$C(kN/m^2) =$	28	γ (kg/m ³) = 2054	
ø (°) =	22	γ (kN/m ³) = 20.15	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
Whitlow. R	N _q = 7.82	
Basic Soil Mech.	N _y = 4.07	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.6	
	q _f = (1.3 x 28 x 16.88) + (0.8 x 20.15 x 1.6 x 7.82) + (0.4 x 20.15 x 1.0 x 4.07)	849 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 849/3.0	283 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN25

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	1.6M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1103
Material Description:	SILTY GRAVEL WITH SAND	Sample Ref:	TP MN 25		Date received:	09.12.2012	
Moisture Ado	dition	150cc	200cc	250cc	300cc	350cc	400cc
Mass of Mou	ld+Base+Soil	5780	5908	6013	6063	6023	5945
Mass of Mou	ld+Base	3995	3995	3995	3995	3995	3995
Mass of Com	pacted Soil	1785	1913	2018	2068	2028	1950
Bulk Density	(Kgs/m ³)	1785	1913	2018	2068	2028	1950
Tin No.		G12	G49	G19	G46	G34	G25
Weight Wet S	Soil	258.1	282.8	285.1	306.5	322.2	320.9
Weight of Dry	/ Soil	214.7	231.6	229.4	242.3	250.9	245.7
Weight of Wa	iter	51.2	55.7	64.2	71.3	75.2	
Moisture Cor	ntent (%)	22.1	24.3	26.5	28.4	30.6	

Maximum Dry Density (Kg/m³): <u>1638</u>

Optimum Moisture Content (%): <u>25.4%</u>

Tested By: STEVE Checked By: WK Date Reported: 25.01.2013

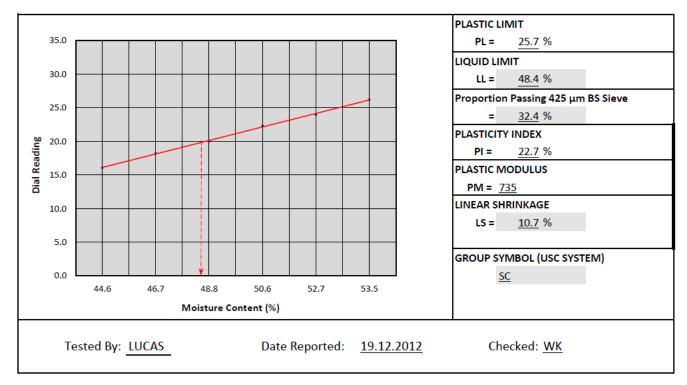
Г

CHEMICAL ANALYSIS

Angle Point MN25						
Depth	1.6m					
рН	8.33					
Chloride(%) mg/l	0.69					
Sulphate (mg/l)	0.002					

ANGLE POINT 25 LOG

PF	OJECT:	N AN	YUKI-ISIO LO - MERU POWERLINE				
	SITE:	NANYUKI-ISIOLO-MERU					
		MN 25					
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION				
0.5		0.6	Dark Brown Silty SAND				
1		1.6	Dark Brown Lateritic GRAVEL				
2							
2.5							


SEGMENT 25

ATTERBERG LIMITS BS 1377 - 2: 1990

MN26

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	CLAYEY SAND WITH GRAVEL	Job Reference:	GCL/TGA-342/12	Sample No.:	1104
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012

		LIQUID LIMIT							PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.		
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-			
Final Gauge Reading (mm)	16.1	18.2	20.0	22.3	24.0	26.2	-	-			
Tin No	9	16	54	45	63	33	37	39			
Mass of Wet Soil (g)	33.85	38.90			44.85	34.86		15.49			
(8)	55.65	38.90	46.14	54.65	44.65	54.60	15.55	15.49			
Mass of Dry Soil (g)	23.41	26.52	31.00	36.41	29.37	22.71	10.63	12.31			
Mass of Moisture (g)	10.44	12.38	15.14	18.42	15.48	12.15	2.72	3.18			
Moisture Content (%)	44.6	46.7	48.8	50.6	52.7	53.5	25.6	25.8	25		

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN26

NESHCONSULT ENGINEERING

PROJECT:	CT: PROPOSED POWERLINE		MN 26	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	CLAYEY SAND WITH GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	17.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1104

DCP - CBR CORRELATION

MN26

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 26	Date of Test:	06.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1104

												No. o	f Blov	ws				
		DCP TES	T RESULTS			0	0				50			1	.00		15	0
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)		U												
0	0	0	65			50			_					_	_		 	
1	1	1	78	13.0			P	R 1										
2	2	3	80	1.0														
3	5	8	95	3.0		100											 	
4	10	18	109	1.4	Ē						PR 2							
5	10	28	125	1.6	5													
6	15	43	140	1.0	tion	150					\succ						 	
7	20	63	157	0.9	Penetration (mm)											PR 3		
8	25	88	177	0.8	en									•	<u>_</u> _'	РКЗ	 	
9	30	118	200	0.8		200												
						250												
						300												
Dono	tration In	dov	Ave	D erage (mm/blov		BR C	ORREI	ATI		imat	od C	3R (%)					 	

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	13	16.1	
PR 2	1.5	255.0	
PR 3	0.8	570.2	

Test By: LUCAS

Checked: <u>WK</u>

ANGLE POINT BEARING CAPACITY

MN26

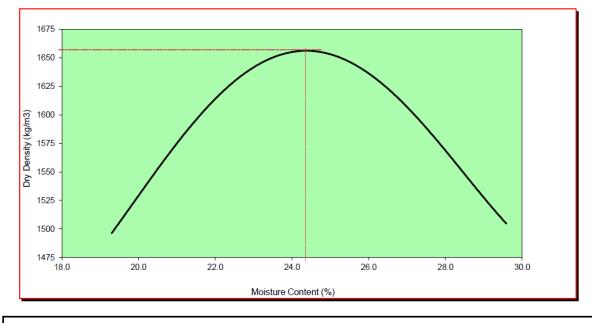
CALCULATION OF SAFE BEARING CAPACITY: TP MN 26							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012	
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DESCRIPTION: CLAYEY SAND			D WITH GRAV	/EL	Sample No.:	1104	

LABORATORY TEST RESULTS

SHEARBOX		DENSITY
$C(kN/m^2) =$	28	γ(kg/m ³) = 2063
ø (°) =	23	γ (kN/m ³) = 20.23

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
Whitlow. R	N _q = 8.66	
Basic Soil Mech. Tomlinson. M.J. Foundation Design & Construction	N _y = 4.82	
	The Ultimate Bearing Capacity of a Pad Foundation	
	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 28 x 18.05) + (0.8 x 20.23 x 2.0 x 8.66) + (0.4 x 20.23 x 1.0 x 4.82)	976 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 976/3.0	325 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN26

Project:	PROPOSED POWERLINE NANYUKI-ISIOLO-MERU CLAYEY SAND WITH GRAVEL		LOCATION: EASTERN Job Ref.: GCL/TGA-342	EASTERN		Depth:	2.0M 1104
Site:				GCL/TGA-342/	/12 Sample No.		
Material Description:			Sample Ref: TP MN 26			Date received:	09.12.2012
Moisture Ado	dition	100cc	150cc	200cc	250cc	300cc	350cc
Mass of Mould+Base+Soil		5780	5908	6013	6063	6023	5945
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1785	1913	2018	2068	2028	1950
Bulk Density (Kgs/m³)		1785	1913	2018	2068	2028	1950
Tin No.		G54	G43	G16	G07	G32	G51
Weight Wet Soil 262.		262.6	280.7	298.9	271.4	295.2	323.2
Weight of Dry Soil 220.1		220.1	231.8	243.0	216.8	231.7	249.4
Weight of Water 42.5		48.9	55.9	54.6	63.5	73.8	
Moisture Content (%) 19.3		21.1	23.0	25.2	27.4	29.6	

Maximum Dry Density (Kg/m³): <u>1658</u>

Optimum Moisture Content (%): <u>24.4%</u>

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

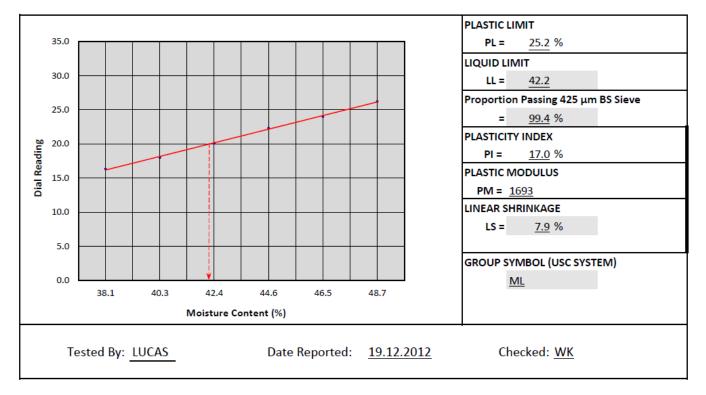
CHEMICAL ANALYSIS

Angle Point MN26		
Depth	2.0m	
рН	8.41	
Chloride(%) mg/l	0.87	
Sulphate (mg/l)	0.002	

TP26-27A		
Depth	1.0m	
рН	8.28	
Chloride(%) mg/l	0.014	
Sulphate (mg/l)	0.050	

ANGLE POINT 26 LOG

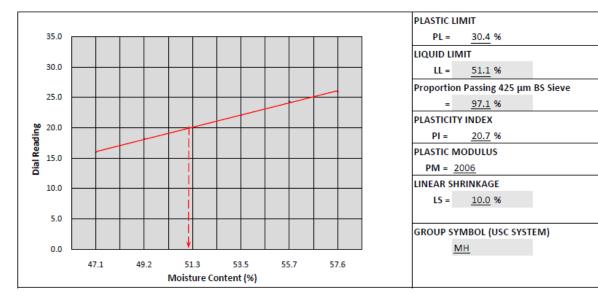
JOB REF:		GCL/NCE_342/12			
MN 26					
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION			
	0.9	Reddish Brown SILT with Sand			
Δ.	2.0	Brown Lateritic GRAVEL			
V					


SEGMENT 26

ATTERBERG LIMITS BS 1377 - 2: 1990

MN27

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY SILT	Job Reference:	GCL/TGA-342/12	Sample No.:	1105
Sampled By:	GCL	Depth:	1.6M	Date Tested:	18.12.2012

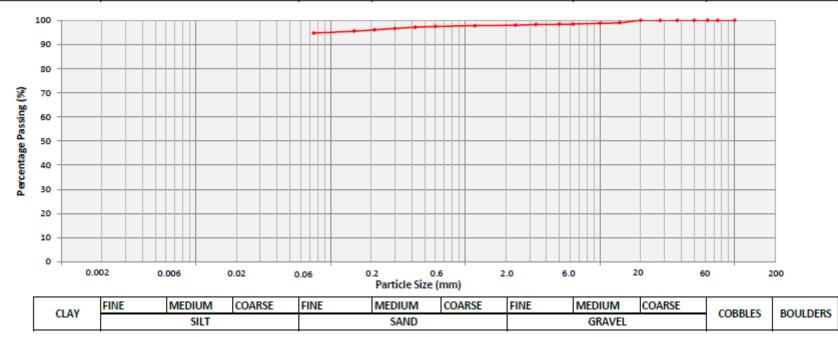

			LIQUID	LIMIT			PLASTIC LIMIT			
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.3	18.0	20.1	22.3	24.0	26.2	-	-		
Tin No	28	59	63	14	74	25	25 1 32			
Mass of Wet Soil (g)	32.40	38.15	41.72	49.63	39.12	46.20	16.75	20.09		
Mass of Dry Soil (g)	23.46	27.19	29.30	34.32	26.70	31.07	13.40	16.03		
Mass of Moisture (g)	8.94	10.96	12.42	15.31	12.42	15.13	3.35	4.06		
Moisture Content (%)	38.1	40.3	42.4	44.6	46.5	48.7	25.0	25.3	25.	

TP27-28

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN27(TP27-28)MN28	Date Received:	06.03.2013
Material Description:	Elastic SILT	Job Reference:	GCL/NAS-356/13	Sample No.:	1207
Sampled By:	GEO CON	Depth:	1.9M	Date Tested:	20.03.2013

		LIQUID LIMIT							ΛIT
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.0	18.2	20.0	22.1	24.3	26.0	-	-	
]
Tin No	6	16	72	53	57	66	71	5	
Mass of Wet Soil (g)	41.95	40.16	39.13	46.69	43.06	52.76	33.90	28.89	
Mass of Dry Soil (g)	28.52	26.92	25.86	30.42	27.65	33.48	26.00	22.14	
Mass of Moisture (g)	13.43	13.24	13.27	16.27	15.41	19.28	7.90	6.75]
Moisture Content (%)	47.1	49.2	51.3	53.5	55.7	57.6	30.4	30.5	3

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN27

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 27	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY SILT	JOB REF:	GCL/TGA-342/12	DATE TESTED:	17.12.2012
SAMPLED BY:	GCL	DEPTH:	1.6M	SAMPLE No.:	1105

TP27-28

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN27(TP27-28)MN28	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	Elastic SILT	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1207

DCP - CBR CORRELATION

MN27

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 27	Date of Test:	06.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	1.6M	Sample No.	1105

													o. o	Blo							
		DCP TES	T RESULTS			0)				50					100				15	50
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)		0															
0	0	0	48		5	0		PR 1	H							_	_				
1	2	2	65	8.5			۹. 														
2	2	4	70	2.5																	
3	5	9	73	0.6	10	0			_	\searrow	_				_	_		_	_		
4	10	19	83	1.0	Ē						^	L P	R 2						_		
5	10	29	90	0.7	Penetration (mm)								~			_		_			
6	15	44	109	1.3	້ <mark>ອີ</mark> 15	0															
7	20	64	130	1.1	etra														PR 3		
8	25	89	152	0.9	ene											_			n s		
9	25	114	178	1.0	20	0													\succ	•	
10	26	140	200	0.8																	
					25	0															
																_					
					30	0															
						0															
					CD/CDD	60	DDC	1 4 71													
Pene	tration In	dex	Ave	erage (mm/blov	CP/CBR	cu	KKE	LATI		stim	ated	CBF	3 (%)								
1 0110			7.00		- /							501	. (70)								
	PR 1			8.5							27.7										

1

0.8

Test By: LUCAS

PR 2

PR 3

Checked:

428.5

570.2

<u>WK</u>

ANGLE POINT BEARING CAPACITY

MN27

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 27											
PROJECT:	PROJECT: PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU DATE RECEIVED: 09.12.2012											
DEPTH:	1.6M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12						
MATERIAL DE	MATERIAL DESCRIPTION: SANDY SILT Sample No.: 1105											

LABORATORY TEST RESULTS

SHEARBOX		DENSITY		
$C(kN/m^2) =$	22	γ (kg/m ³) =	1766	
ø (°) =	18	y (kN/m ³) =	17.32	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 13.10	
Whitlow. R	N _q = 5.26	
Basic Soil Mech.	N _y = 2.00	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.6	
	q _f = (1.3 x 22 x 13.10) + (0.8 x 17.32 x 1.6 x 5.26) + (0.4 x 17.32 x 1.0 x 2.00)	505 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 505/3.0	168 kN/m ²

Calculations By: B.K.

Checked: <u>WK</u>

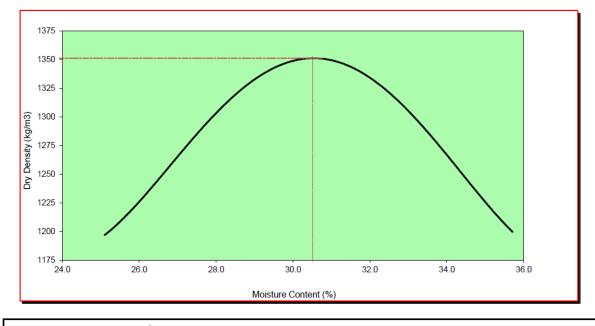
TP27-28

	CALCULATION OF SAFE BEARING CAPACITY: TMN27 (TP27-28) MN28											
PROJECT:	PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU DATE RECEIVED: 06.03.2013											
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03						
MATERIAL DESC	RIPTION:	ELASTIC SILT		Sample No.:	1207							

LABORATORY TEST R	ESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	28	γ (kg/m ³) = 2063
ø (°) =	23	γ (kN/m ³) = 20.23

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
	N _q = 8.66	
Whitlow. R Basic Soil Mech.	N _γ = 4.82	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 28 x 18.05) + (0.8 x 20.23 x 2.0 x 8.66) + (0.4 x 20.23 x 1.0 x 4.82)	976 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 976/3.0	325 kN/m ²

Calculations By: B.K.


Checked: <u>WK</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN27

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	1.6M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1105
Material Description:	SANDY SILT	Sample Ref: TP MN 27			Date received:	09.12.2012	
Moisture Ado	dition	250cc	300cc	350cc	400cc	450cc	500cc
Mass of Mou	ld+Base+Soil	5492	5621	5722	5764	5712	5623
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1497	1626	1727	1769	1717	1628
Bulk Density	(Kgs/m ³)	1497	1626	1727	1769	1717	1628
Tin No.		G18	G31	G36	G49	G41	G32
Weight Wet S	Soil	233.1	216.9	243.2	264.9	258.2	286.9
Weight of Dry	/ Soil	186.3	170.4	188.2	201.6	193.4	211.4
Weight of Wa	ater	46.8	46.5	<mark>55.0</mark>	63.3	64.8	75.5
Moisture Cor	ntent (%)	25.1	27.3	29.2	31.4	33.5	35.7

Maximum Dry Density (Kg/m³): <u>1350</u>

Optimum Moisture Content (%): <u>30.8%</u>

Tested By: <u>STEVE</u>

Checked By: WK

Date Reported: 25.01.2013

CHEMICAL ANALYSIS

Angle Point MN27				
Depth	1.6m			
рН	8.32			
Chloride(%) mg/l	0.53			
Sulphate (mg/l)	0.001			

TP27-28				
Depth	2.0m			
рН	7.14			
Chloride(%) mg/l	0.015			
Sulphate (mg/l)	0.018			

ANGLE POINT 27 LOG

DATE	5	03.09.12.2012
LOGGED	BY:	LUCAS
		MN 27
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
	0.9	Brownish Grey Silty SAND
Δ	1.6	Dark Brown Lateritic GRAVEL
	2.0	

TEST POINT 27-28A LOG

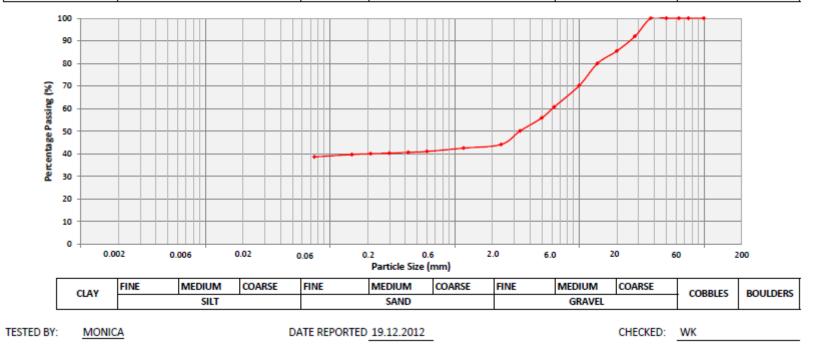
PR	O JECT:	NANY	/UKI-ISIOLO-MERU POWERLINE
5	SITE:		NANYUKI-ISIOLO-MERU
		MN27	(TP27-28A) MN28
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
0.5 1 1.5 2		2.0	Brown Elastic SILT
2.5			

SEGMENT 27

ATTERBERG LIMITS BS 1377 - 2: 1990

MN28

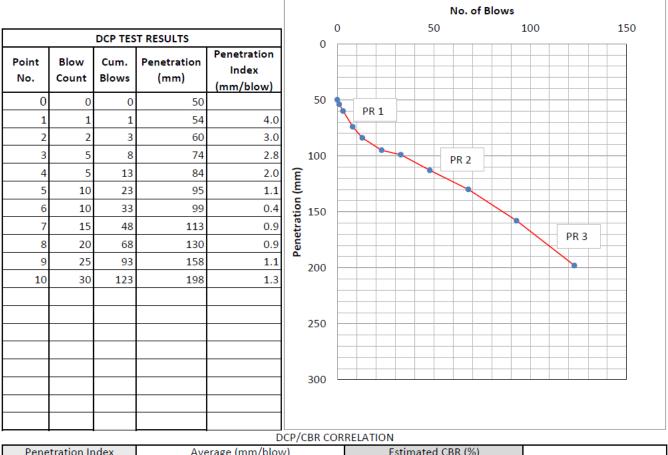
Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SILTY SAND WITH GRAVEL	Job Reference:	GCL/TGA-342/12	Sample No.:	1106
Sampled By:	GCL	Depth:	1.2M	Date Tested:	18.12.2012


		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	1 2 3 4 5 6					1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.3	22.1	24.0	26.1	-	-	
Tin No	20	31	25	64	68	47	41	2	
Mass of Wet Soil (g)	31.08	38.15	35.19	42.60	47.19	41.86	20.66	16.78	
Mass of Dry Soil (g)	20.13	24.36	22.16	26.51	29.04	25.48	15.77	12.82	
Mass of Moisture (g)	10.95	13.79	13.03	16.09	18.15	16.38	4.89	3.96	
Moisture Content (%)	54.4	56.6	58.8	60.7	62.5	64.3	31.0	30.9	30

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN28

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 28	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SILTY SAND WITH GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	17.12.2012
SAMPLED BY:	GCL	DEPTH:	1.2M	SAMPLE No.:	1106



DCP - CBR CORRELATION

MN28

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 28	Date of Test:	06.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	1.2M	Sample No.	1106

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	3.5	86.2	
PR 2	2.4	139.7	
PR 3	0.6	824.1	

Test By: LUCAS

Checked: WK

ANGLE POINT BEARING CAPACITY

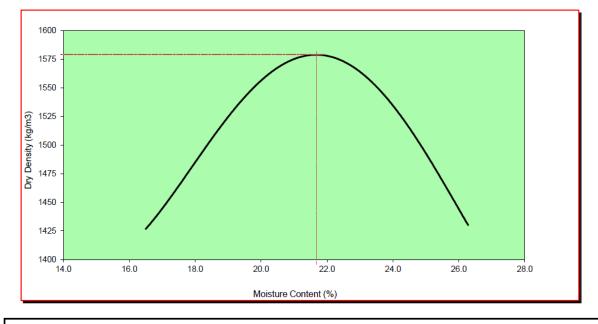
MN28

CALCULATION OF SAFE BEARING CAPACITY: TP MN 28								
PROJECT:	PROJECT: PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU DATE RECEIVED: 09.12.2012					09.12.2012		
DEPTH:	1.2M LC		.2M LOCATION: EASTERN JOB No		JOB No.:	GCL/TGA_342/12		
MATERIAL DE	MATERIAL DESCRIPTION: SILTY SAND			L	Sample No.:	1106		

LABORATORY TES	T RESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	27	γ (kg/m ³) = 1921
ø (°) =	22	γ(kN/m ³) = 18.85

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
Whitlow. R	$N_q = 7.82$	
Basic Soil Mech.	N _γ = 4.07	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.2	
	q _f = (1.3 x 27 x 16.88) + (0.8 x 18.85 x 1.2 x 7.82) + (0.4 x 18.85 x 1.0 x 4.07)	765 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 765/3.0	255 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN28

Project:	PROPOSED POWERLINE NANYUKI-ISIOLO-MERU SILTY SAND WITH GRAVEL		LOCATION:	EASTERN		Depth:	1.2M
Site:			Job Ref.:	GCL/TGA-342/	12	Sample No.:	1106
Material Description:			Sample Ref: TP MN 28			Date received:	09.12.2012
Moisture Add	dition	100cc	150cc	200cc	250cc	300cc	350cc
Mass of Mould+Base+Soil		5657	5791	5886	5923	5881	5801
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil 1		1662	1796	1891	1928	1886	1806
Bulk Density (Kgs/m ³) 1		1662	1796	1891	1928	1886	1806
Tin No.		G55	G11	G17	G23	G12	G34
Weight Wet S	Soil	303.4	259.1	286.5	274.8	312.1	304.6
Weight of Dry Soil 2		260.4	218.3	237.6	224.5	250.7	241.2
Weight of Water 43.0		43.0	40.8	48.9	50.3	61.4	<mark>63.4</mark>
Moisture Cor	ntent (%)	16.5	18.7	20.6	22.4	24.5	26.3

Maximum Dry Density (Kg/m³): <u>1580</u>

Optimum Moisture Content (%): <u>21.6%</u>

Tested By: <u>STEVE</u>

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN28						
Depth	1.2m					
рН	8.93					
Chloride(%) mg/l	1.17					
Sulphate (mg/l)	0.002					

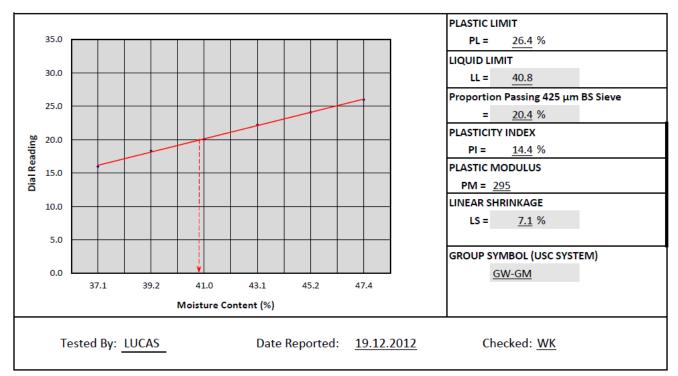
TP28-29					
Depth	1.5m				
рН	7.73				
Chloride(%) mg/l	0.009				
Sulphate (mg/l)	0.015				

ANGLE POINT 28 LOG

PR	OJ ECT:	N AN	YUKI-ISIO LO - MERU POWERLINE			
S	ITE:		N ANYUKI-ISIOLO-MERU			
		MN 28				
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION			
0.5		0.6	Brown Silty SAND			
1	Λ	1.2	Brown Lateritic GRAVEL			
1.5						
2						
2.5						

TEST POINT 28-29 LOG

JOB REF:		GCL/NCE_356/03
		8(TP28-29) MN29
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	1.4	Brown Clayey SAND with Gravel fractions
- Ant		Fragmented rock Boulders
Carter -	1.3	r ragine neer roek bounter s


SEGMENT 28

ATTERBERG LIMITS BS 1377 - 2: 1990

MN29

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
	GRAVEL WITH SILT AND				
Material Description:	SAND	Job Reference:	GCL/TGA-342/12	Sample No.:	1107
Sampled By:	GCL	Depth:	1.0M	Date Tested:	18.12.2012

		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	1 2 3 4 5 6					1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.0	18.3	20.1	22.2	24.1	26.0	-	-	
Tin No	27	36	62	51	47	43	9	12	
Mass of Wet Soil (g)	49.92	41.23	46.49	28.90	33.48	40.73	16.67	18.08	
Mass of Dry Soil (g)	36.41	29.62	32.97	20.19	23.06	27.63	13.20	14.30	
Mass of Moisture (g)	13.51	11.61	13.52	8.71	10.42	13.10	3.47	3.78	

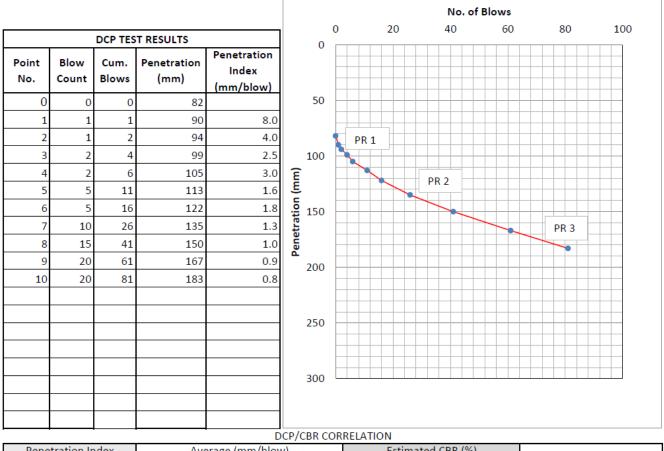


PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN29

NESHCONSULT ENGINEERING

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 29	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	WELL-GRADED GRAVEL WITH SILT AND SA	JOB REF:	GCL/TGA-342/12	DATE TESTED:	17.12.2012
SAMPLED BY:	GCL	DEPTH:	1.0M	SAMPLE No.:	1107
100			-		• • • • • • • • • • • • • • • • • • • •


360

DCP - CBR CORRELATION

MN29

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 29	Date of Test:	05.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	1.0M	Sample No.	1107

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	6	43.2	
PR 2	1.8	202.0	
PR 3	0.85	527.6	

Test By: LUCAS

Checked: <u>WK</u>

ANGLE POINT BEARING CAPACITY

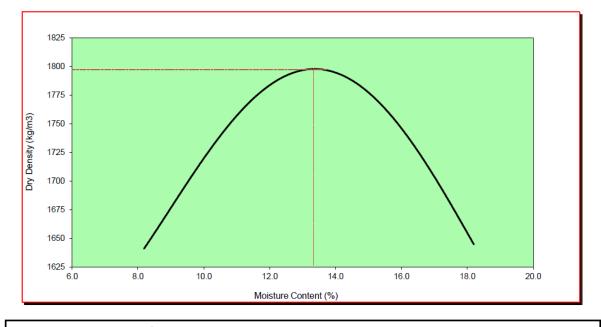
MN29

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 29						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012	
DEPTH:	DEPTH: 1.0M LOCATION: EASTERN JOB No.: GCL/TGA_342/12						
MATERIAL DE	SCRIPTION:	GRAVEL WIT	TH SILT AND S	AND	Sample No.:	1107	

LABORATORY TES	LABORATORY TEST RESULTS						
SHEARBOX		DENSITY					
$C(kN/m^2) =$	31	$\gamma (kg/m^3) =$	2036				
ø (°) =	25	γ (kN/m ³) =	19.97				

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 20.72	
Whitlow. R	N _q = 10.66	
Basic Soil Mech.	N _y = 6.77	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.0	
	q _f = (1.3 x 31 x 20.72) + (0.8 x 19.97 x 1.0 x 10.66) + (0.4 x 19.97 x 1.0 x 6.77)	1059 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 1059/3.0	353 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN29

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	1.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1107
Material Description:	GRAVEL WITH SILT AND SAND		Sample Ref: TP MN 29			Date received:	09.12.2012
Moisture Add	dition	50cc	100cc	150cc	200cc	250cc	300cc
Mass of Moul	d+Base+Soil	5770	5894	5992	6043	6009	5939
Mass of Moul	d+Base	3995	3995	3995	3995	3995	3995
Mass of Comp	pacted Soil	1775	1899	1997	2048	2014	1944
Bulk Density	(Kgs/m ³)	1775	1899	1997	2048	2014	1944
Tin No.		G38	G11	G15	G24	G27	G43
Weight Wet S	Soil	253.8	274.5	307.9	307.6	285.6	271.5
Weight of Dry	/ Soil	234.6	249.3	274.9	269.1	245.4	229.7
Weight of Wa	ter	19.2	25.2	33.0	38.5	40.2	41.8
Moisture Cor	itent (%)	8.2	10.1	12.0	14.3	16.4	18.2

Maximum Dry Density (Kg/m³): <u>1795</u>

Optimum Moisture Content (%): <u>13.4%</u>

Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN29					
Depth	1.0m				
рН	8.6				
Chloride(%) mg/l	1.06				
Sulphate (mg/l)	0.002				

TP29-30A					
Depth	0.8m				
рН	7.03				
Chloride(%) mg/l	-				
Sulphate (mg/l)	-				

TP29-30B					
Depth	1.2m				
рН	7.86				
Chloride(%) mg/l	0.010				
Sulphate (mg/l)	0.033				

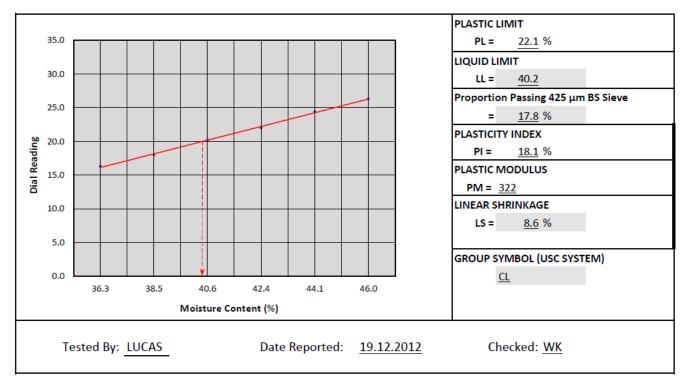
TP29-30C					
Depth	1.2m				
рН	7.18				
Chloride(%) mg/l	0.005				
Sulphate (mg/l)					

ANGLE POINT 29 LOG

JOB REF:		GCL/NCE_342/12					
	MN 29						
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION					
		Brown Silty SAND					
	0.4						
~	1.2	Brown Lateritic GRAVEL					

TEST POINT 29-30A, 29-30C LOG

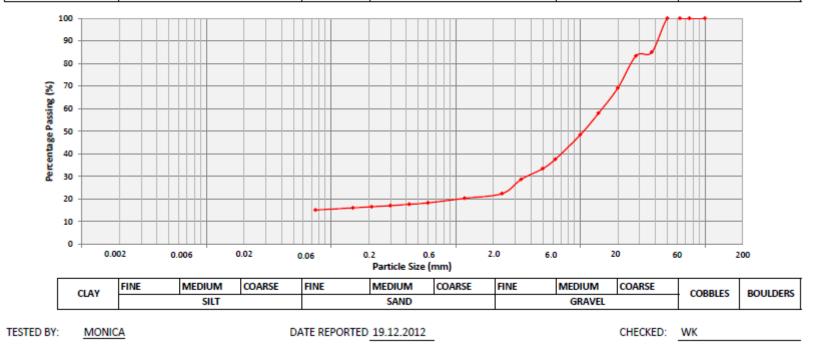
DATE	3:	23 - 28.02.2013	DAT	E:	23 - 28.02.2013	
LOGGED	BY:	STEVE	LOGGED BY: STEVE		STEVE	
	MN29 (TP29-30A) MN30			MN29 (TP29-30C) MN30		
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	
	0.8	Fragmented ROCK boulders and cobble fractions		1.0	Fragmented rock Boulders and	


SEGMENT 29

ATTERBERG LIMITS BS 1377 - 2: 1990

MN30

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	CLAYEY SAND WITH GRAVEL	Job Reference:	GCL/TGA-342/12	Sample No.:	1108
•					
Sampled By:	GCL	Depth:	1.6M	Date Tested:	18.12.2012


	LIQUID LIMIT			PL	PLASTIC LIMIT				
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.0	20.2	22.0	24.4	26.3	-	-	
The Ma						-			
Tin No	35	26	24	59	78	8	47	51	
Mass of Wet Soil (g)	23.78	25.22	38.12	32.95	27.61	29.65	12.75	15.42	
		40.04	27.11	23.14	19.16	20.31	10.45	12.62	
Mass of Dry Soil (g)	17.45	18.21	27.11	25.14	19.10	20.51	20110		
Mass of Dry Soil (g) Mass of Moisture (g)	17.45 6.33	7.01		9.81	8.45	9.34	2.30	2.80	

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN30

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 30	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	CLAYEY SAND WITH GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	17.12.2012
SAMPLED BY:	GCL	DEPTH:	1.6M	SAMPLE No.:	1108

DCP - CBR CORRELATION

MN30

ANGLE POINT BEARING CAPACITY

MN30

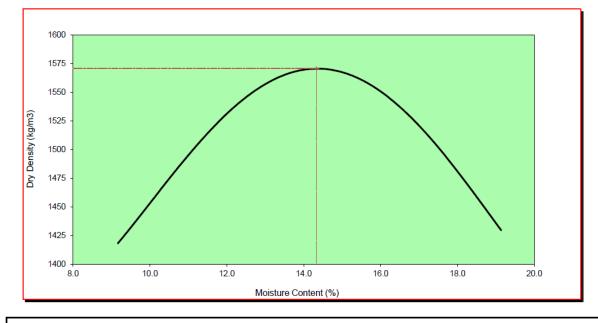
	CALCULATION OF SAFE BEARING CAPACITY: TP MN 30					
PROJECT:	PROPOSED POWERLINE		SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH:	DEPTH: 1.6M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12
MATERIAL DE	MATERIAL DESCRIPTION: CLAYEY SAN			/EL	Sample No.:	1108

LABORATORY TEST RESULTS

SHEARBOX		DENSITY		
$C(kN/m^2) =$	28	y (kg/m ³) =	1796	
ø (°) =	23	γ (kN/m ³) =	17.62	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
Whitlow. R	N _q = 8.66	
Basic Soil Mech.	N _Y = 4.82	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.6	
	q _f = (1.3 x 28 x 18.05) + (0.8 x 17.62 x 1.6 x 8.66) + (0.4 x 17.62 x 1.0 x 4.82)	886 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 886/3.0	295 kN/m ²

Calculations By: B.K.


Checked: <u>WK</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN30

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	1.6M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1108
Material Description:	CLAYEY SAND WITH GRAVEL		Sample Ref: TP MN 30			Date received:	09. 1 2.2012
Moisture Ado	lition	100cc	150cc	200cc	250cc	300cc	350cc
Mass of Moul	d+Base+Soil	5543	5658	5765	5798	5768	5698
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil 154		1548	1663	1770	1803	1773	1703
Bulk Density	(Kgs/m ³)	1548	1663	1770	1803	1773	1703
Tin No.		G03	G21	G37	G42	G15	G39
Weight Wet S	oil	262.0	251.0	324.0	258.0	204.0	249.0
Weight of Dry	/ Soil	240.0	226.0	286.0	224.0	174.0	209.0
Weight of Water 22.0		25.0	38.0	34.0	30.0	40.0	
Moisture Content (%) 9.2		11.1	13.3	15.2	17.2	19.1	

Optimum Moisture Content (%): <u>14.4%</u>

Maximum Dry Density (Kg/m³): <u>1570</u>

Date Reported: 25.01.2013

Checked By: WK

Tested By: <u>STEVE</u>

CHEMICAL ANALYSIS

Angle Point MN30				
Depth	1.6m			
рН	6.92			
Chloride(%) mg/l	-			
Sulphate (mg/l)				

TP30-31A				
Depth	1.5m			
рН	7.32			
Chloride(%) mg/l	0.008			
Sulphate (mg/l)	0.023			

ANGLE POINT 30 LOG

DATE	6	03.09.12.2012
LOGGED	BY:	LUCAS
		MN 30
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
		Brownish Red SILT with Sand
~	1.6	Reddish Brown Lateritic GRAVEL

TEST POINT 30-31 LOG

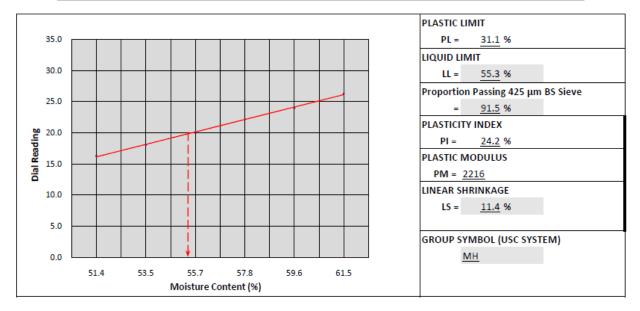
JOB REF:		GCL/NCE_356/03
	MN3	0 (TP30-31) MN31
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	1.4	
Call	1.5	Fragmented rock Boulders

SEGMENT 30

ATTERBERG LIMITS BS 1377 - 2: 1990

MN31

Project:	PROPOSED POWERLI E	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SILTY SAND WITH GRAVEL	Job Reference:	GCL/TGA-342/12	Sample No.:	1109
Sampled By:	GCL	Depth:	1.0M	Date Tested:	18.12.2012

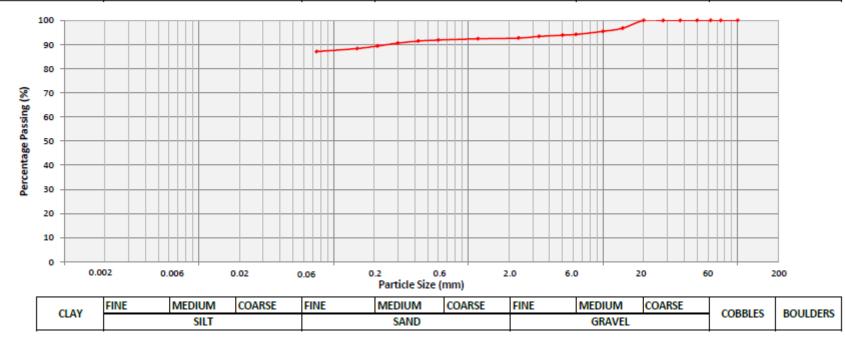

			LIQUID	LIMIT			PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.0	18.0	20.3	22.0	24.0	26.0	-	-	
Tin No	57	43	45	61	21	23	45	56	
Mass of Wet Soil (g)	33.05	39.46	32.41	29.94	33.93	40.32	20.79	26.43	
Mass of Dry Soil (g)	23.08	27.14	21.98	20.06	22.41	26.32	15.76	20.02	
Mass of Moisture (g)	9.97	12.32	10.43	9.88	11.52	14.00	5.03	6.41	
Moisture Content (%)	43.2	45.4	47.5	49.3	51.4	53.2	31.9	32.0	32

TP31-32A

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN31 (TP31-32A)MN32	Date Received:	06.03.2013
Material Description:	Elastic SILT	Job Reference:	GCL/NAS-356/13	Sample No.:	1213
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	20.03.2013

			LIQUID	LIMIT			PL	1IT	
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.1	20.0	22.2	24.0	26.3	-	-	
Tin No	42	15	26	35	17	84	37	29	
Mass of Wet Soil (g)	64.54	68.69	49.88	60.25	64.33	55.72	23.50	28.23	
Mass of Dry Soil (g)	42.63	44.75	32.03	38.18	40.31	34.50	17.94	21.52	
Mass of Moisture (g)	21.91	23.94	17.85	22.07	24.02	21.22	5.56	6.71	
Moisture Content (%)	51.4	53.5	55.7	57.8	59.6	61.5	31.0	31.2	31.1

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN31

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 31	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SILTY SAND WITH GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	18.12.2012
SAMPLED BY:	GCL	DEPTH:	1.0M	SAMPLE No.:	1109

TP31-32A

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN31(TP31-32A)MN32	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	Elastic SILT	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1213

DCP - CBR CORRELATION

MN31

ANGLE POINT BEARING CAPACITY

MN31

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 31							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012		
DEPTH:	1.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12		
MATERIAL DESCRIPTION: SILTY SAND WITH GRAVEL					Sample No.:	1109		

LABORATORY TES	T RESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	26	γ (kg/m ³) = 1918
ø (°) =	23	γ (kN/m ³) = 18.82

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
Whitlow. R	N _q = 8.66	
Basic Soil Mech.	N _y = 4.82	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.0	
	q _f = (1.3 x 26 x 18.05) + (0.8 x 18.82 x 1.0 x 8.66) + (0.4 x 18.82 x 1.0 x 4.82)	777 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 777/3.0	259 kN/m ²

Calculations By: B.K.

Checked: WK

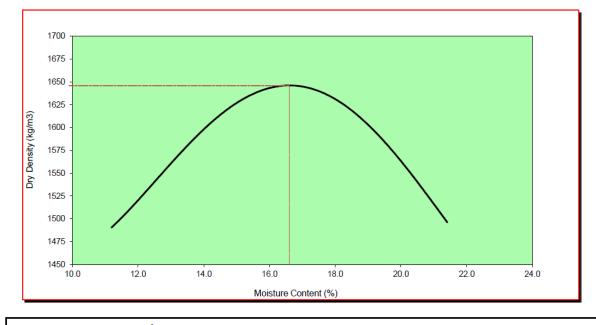
TP31-32A

CALCULATION OF SAFE BEARING CAPACITY: MN31 (TP31-32A) MN32								
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013		
DEPTH:	1.6M		1.6M L		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESCRIPTION: ELASTIC SILT					Sample No.:	1213		

LABORATORY TEST RESULTS							
SHEARBOX		DENSITY					
$C(kN/m^2) =$	22	γ (kg/m ³) = 1766					
ø (°) =	18	γ (kN/m ³) = 17.32					

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 13.10	
	N _q = 5.26	
Whitlow. R Basic Soil Mech.	N _y = 2.00	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 1.6	
	q _f = (1.3 x 22 x 13.10) + (0.8 x 17.32 x 1.6 x 5.26) + (0.4 x 17.32 x 1.0 x 2.00)	505 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 505/3.0	168 kN/m ²

Calculations By: B.K.


Checked: <u>WK</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN31

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	1.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1109
Material Description:	SILTY SAND WITH GRAVEL				Date received:	09.12.2012	
Moisture Ad	dition	50cc	100cc	150cc	200cc	250cc	300cc
Mass of Mou	ld+Base+Soil	5652	5779	5882	5925	5883	5812
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1657	1784	1887	1930	1888	1817
Bulk Density	(Kgs/m³)	1657	1784	1887	1930	1888	1817
Tin No.		G53	G22	G58	G27	G29	G31
Weight Wet S	Soil	232.5	257.0	281.1	254.6	297.8	330.0
Weight of Dr	y Soil	209.1	226.8	243.4	216.3	249.0	271.8
Weight of Wa	ater	23.4	30.2	37.7	38.3	48.8	58.2
Moisture Cor	ntent (%)	11.2	13.3	15.5	17.7	19.6	21.4

Maximum Dry Density (Kg/m³): <u>1645</u>

Optimum Moisture Content (%): <u>16.6%</u>

Tested By: STEVE

Г

Date Reported: 25.01.2013

Checked By: WK

٦

CHEMICAL ANALYSIS

Angle Point MN31							
Depth	1.0m						
рН	7.9						
Chloride(%) mg/l	0.61						
Sulphate (mg/l)	0.001						

TP31-32							
Depth	2.0m						
рН	7.22						
Chloride(%) mg/l	0.006						
Sulphate (mg/l)	0.033						

TP31-32B							
Depth	0.8m						
рН	7.10						
Chloride(%) mg/l	-						
Sulphate (mg/l)	-						

ANGLE POINT 31 LOG

PRO	OJECT:	N AN	YUKI-ISIO LO - MERU POWERLINE			
S	ITE:		N ANYUKI-ISIOLO-MERU			
		MN 31				
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION			
0.5			Brownish Grey Highly weathered Fragmented Rock Strata			
1		1.0				
1.5						
2						

TEST POINT 31-32A, 31-32B LOGS

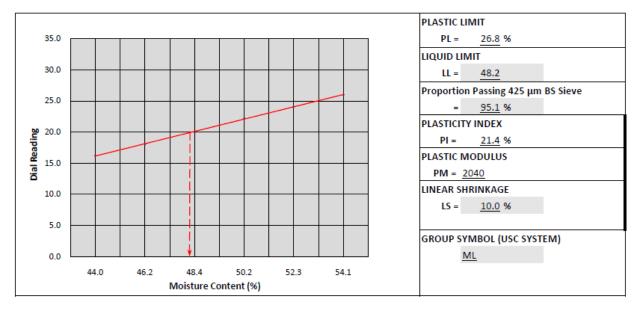
PR			UKI-ISIOLO-MERU POWERLINE	٦Г	DATE	:	23 - 28.02.2013
S	ITE:		NANYUKI-ISIOLO-MERU		LOGGED	BY:	STEVE
		MN31 ((TP31-32A) MN32			MN31	(TP31-32B) MN32
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION		LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
0.5 1.5 2 2.5		2.0	Brown Elastic SILT			0.6	

SEGMENT 31

ATTERBERG LIMITS BS 1377 - 2: 1990

MN32

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1110
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012

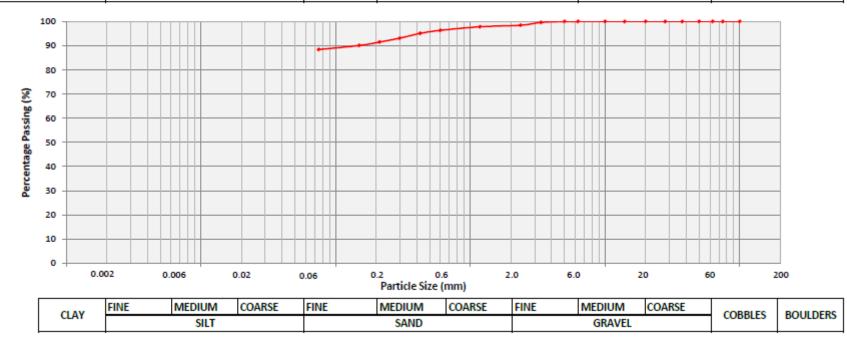

		LIQUID LIMIT						PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.0	18.3	20.0	22.1	24.2	26.0	-	-		
Tin No	69	42	21	28	23	52	17	48		
Mass of Wet Soil (g)	43.22	36.12	33.99	39.34	49.23	41.99	23.40	27.42		
Mass of Dry Soil (g)	30.76	25.49	23.58	27.02	33.40	28.09	19.07	22.31		
Mass of Moisture (g)	12.46	10.63	10.41	12.32	15.83	13.90	4.33	5.11		
Moisture Content (%)	40.5	41.7	44.1	45.6	47.4	49.5	22.7	22.9	22	

TP32-33

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN32 (TP32-33)MN33	Date Received:	06.03.2013
Material Description:	SILT	Job Reference:	GCL/NAS-356/13	Sample No.:	1215
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	20.03.2013

		LIQUID LIMIT							1IT
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.1	20.0	22.2	24.1	26.0	-	-	
Tin No	22	15	32	62	54	18	49	27	
Mass of Wet Soil (g)	41.64	54.71	46.54	38.17	41.17	50.14	38.95	41.07	
Mass of Dry Soil (g)	28.92	37.42	31.37	25.41	27.03	32.54	30.74	32.39	
Mass of Moisture (g)	12.72	17.29	15.17	12.76	14.14	17.60	8.21	8.68	
Moisture Content (%)	44.0	46.2	48.4	50.2	52.3	54.1	26.7	26.8	26

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN32

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 32	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	18.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1110

TP32-33

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN32(TP32-33)MN33	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	SILT	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1215

DCP - CBR CORRELATION

MN32

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 32	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1110

										N	o. of	Blows					
		DCP TES	T RESULTS			0			20		4()		60			80
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)	0												
0	0	0	50		50		PR 1										
1	1	1	60	10.0													
2	1	2	65	5.0													
3	2	4	75	5.0	100		+	~		PR	2	_					
4	5	9	85	2.0	E												
5	5	14	95	2.0	Penetration (mm)												
6	5	19	105	2.0	1 50								-		PF	3 3	
7	10	29	120	1.5	etra												
8	10	39	138	1.8	ene											-	
9	15	54	152	0.9	200												
10	20	74	175	1.2	200		_		_								
					250												
					230												
										_							
					300								1				
				D	CP/CBR C	ORREI	ATIC	0N									

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	10	22.5	
PR 2	5	54.6	
PR 3	1.5	255.0	

Test By: LUCAS

Checked: <u>WK</u>

ANGLE POINT BEARING CAPACITY

MN32

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 32							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012		
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12		
MATERIAL DESCRIPTION: SANDY LEAN			I CLAY		Sample No.:	1110		

LABORATORY TES	LABORATORY TEST RESULTS							
SHEARBOX		DENSITY						
$C(kN/m^2) =$	23	γ (kg/m ³) =	1873					
ø (°) =	21	y (kN/m ³) =	18.38					

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R	N _q = 7.07	
Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 15.81) + (0.8 x 18.38 x 2.0 x 7.07) + (0.4 x 18.38 x 1.0 x 3.42)	706 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 706/3.0	235 kN/m ²

Calculations By: B.K.

Checked: WK

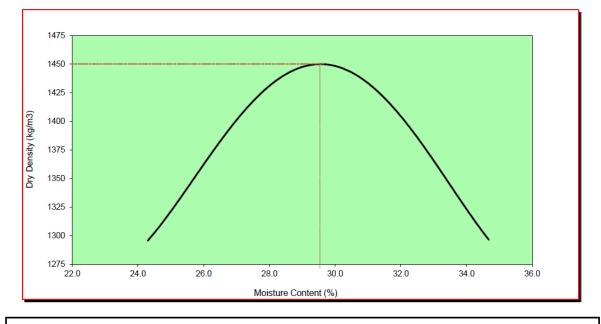
TP32-33

CALCULATION OF SAFE BEARING CAPACITY: MN32 (TP32-33) MN33							
PROJECT:	PROPOSED I	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013	
DEPTH:	1.2M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03	
MATERIAL DESCRIPTION: S		SANDY SILT			Sample No.:	1215	

LABORATORY TEST RESULTS							
SHEARBOX		DENSITY					
$C(kN/m^2) =$	27	γ (kg/m ³) = 1921					
ø (°) =	22	γ (kN/m ³) = 18.85					

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
	N _q = 7.82	
Whitlow. R Basic Soil Mech.	N _y = 4.07	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 1.2	
	q _f = (1.3 x 27 x 16.88) + (0.8 x 18.85 x 1.2 x 7.82) + (0.4 x 18.85 x 1.0 x 4.07)	765 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 765/3.0	255 kN/m ²

Calculations By: B.K.


Checked: <u>WK</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN32

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1110
Material Description:	SANDY LEAN CLAY	Sample Ref: TP MN 32			Date received:	09.12.2012	
Moisture Ado	dition	150cc	200cc	250cc	300cc	350cc	400cc
Mass of Mould+Base+Soil		5605	5746	5848	5881	5831	5741
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1610	1751	1853	1886	1836	1746
Bulk Density	(Kgs/m ³)	1610	1751	1853	1886	1836	1746
Tin No.		G29	G37	G57	G11	G13	G04
Weight Wet S	Soil	246.6	237.6	256.7	276.1	289.2	302.9
Weight of Dry	/ Soil	198.4	187.8	199.6	211.7	218.3	224.9
Weight of Water 48.2		49.8	57.1	64.4	70.9	78.0	
Moisture Content (%) 24.3		26.5	28.6	30.4	32.5	34.7	

Maximum Dry Density (Kg/m³): <u>1450</u>

Optimum Moisture Content (%): <u>29.2%</u>

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN32				
Depth	2.0m			
рН	6.94			
Chloride(%) mg/l	-			
Sulphate (mg/l)				

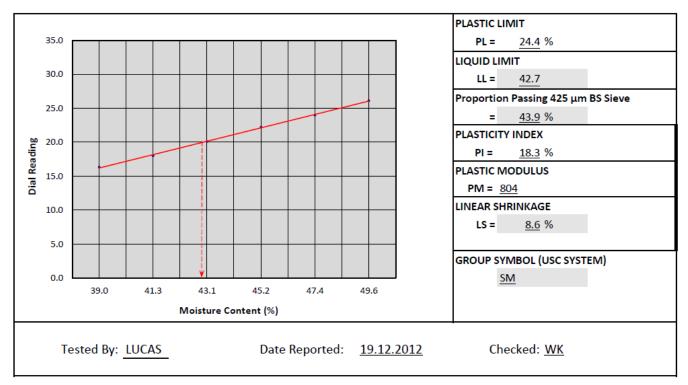
TP32-33					
Depth	2.0m				
рН	7.16				
Chloride(%) mg/l	0.008				
Sulphate (mg/l)	0.035				

ANGLE POINT 32 LOG

JOB REF:		GCL/NCE_342/12
		MN 32
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	2.0	Red dis h Brown Elastic SILT
V		

TEST POINT 32-33 LOG

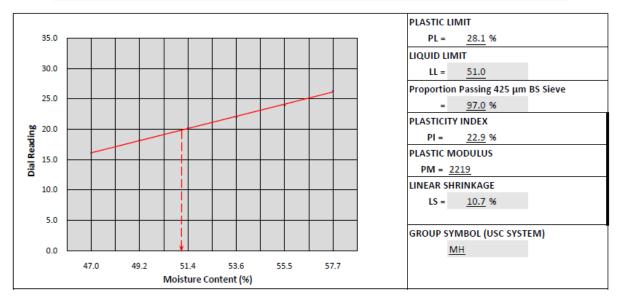
	O JECT:	NANY	/UKI-ISIOLO-MERU POWERLINE
5	SITE:		NANYUKI-ISIOLO-MERU
		MN32	(TP32-33) MN33
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
0.5	x x x x x x x x x x x x x x x x x x x x	1.5	Brown Elastic SILT with Sand
1.5		1.5	
2	× · · ×	2.0	Brown Elastic SILT
2.5	v		


SEGMENT 32

ATTERBERG LIMITS BS 1377 - 2: 1990

MN33

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SILTY SAND WITH GRAVEL	Job Reference:	GCL/TGA-342/12	Sample No.:	1111
Sampled By:	GCL	Depth:	2.7M	Date Tested:	18.12.2012


		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.0	20.1	22.2	24.0	26.1	-	-	
Tin No	35	27	19	8	26	36	29	58	
Mass of Wet Soil (g)	36.79	25.76	31.13	34.86	42.19	38.57	24.97	29.87	
Mass of Dry Soil (g)	26.47	18.23	21.76	24.01	28.62	25.78	20.09	24.00	
						40.70	4.00	F 07	
Mass of Moisture (g)	10.32	7.53	9.37	10.85	13.57	12.79	4.88	5.87	

TP33-34C

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN33 (TP33-34C)MN34	Date Received:	06.03.2013
Material Description:	Elastic SILT	Job Reference:	GCL/NAS-356/13	Sample No.:	1218
Sampled By:	GEO CON	Depth:	1.2M	Date Tested:	20.03.2013
			2.0M		

			LIQUID LIMIT					PLASTIC LIMIT		
Test No.		1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (r	nm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (n	nm)	16.1	18.2	20.2	22.0	24.0	26.3	-	-	
Tin Ma										
Tin No		20	31	25	64	68	47	41	2	
Mass of Wet Soil	(g)	34.46	37.33	41.72	45.04	49.29	42.44	13.24	17.32	
Mass of Dry Soil	(g)	23.44	25.02	27.56	29.32	31.70	26.91	10.34	13.51	
Mass of Moisture	(g)	11.02	12.31	14.16	15.72	17.59	15.53	2.90	3.81	
Moisture Content	(%)	47.0	49.2	51.4	53.6	55.5	57.7	28.0	28.2	2

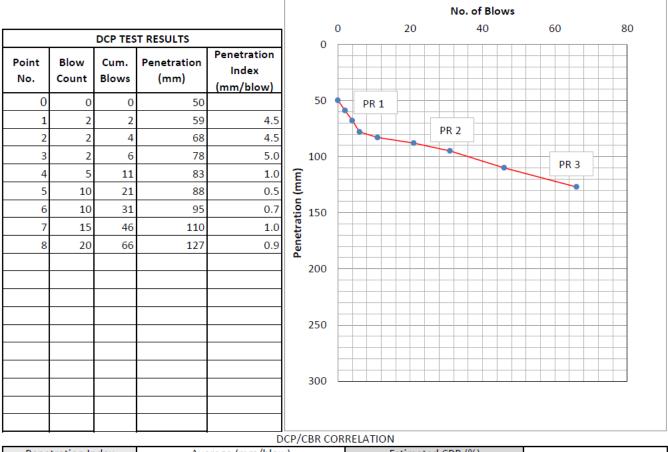
PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN33

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 33	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SILTY SAND WITH GRAVEL	JOB REF:	GCL/TGA-342/12	DATE TESTED:	18.12.2012
SAMPLED BY:	GCL	DEPTH:	2.7M	SAMPLE No.:	1111

TP33-34C

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN33(TP33-34C)MN34	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	Elastic SILT	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1218



DCP - CBR CORRELATION

MN33

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 33	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.7M	Sample No.	1111

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	4.5	62.5	
PR 2	2	176.5	
PR 3	0.8	570.2	

Test By: LUCAS

Checked: WK

.

ANGLE POINT BEARING CAPACITY

MN33

CALCULATION OF SAFE BEARING CAPACITY: TP MN 33							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012	
DEPTH:	2.7M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DESCRIPTION: SILTY SAND WITH GRAVEL			L	Sample No.:	1111		

LABORATORY TEST RESULTS

			_
SHEARBOX		DENSITY	
$C(kN/m^2) =$	27	γ(kg/m ³) = 1972	
ø (°) =	22	y (kN/m ³) = 19.35	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
Whitlow. R	$N_q = 7.82$	
Basic Soil Mech.	N _Y = 4.07	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.7	
	q _f = (1.3 x 27 x 16.88) + (0.8 x 19.35 x 2.7 x 7.82) + (0.4 x 19.35 x 1.0 x 4.07)	951 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 951/3.0	317 kN/m ²

Calculations By: B.K.

Checked: WK

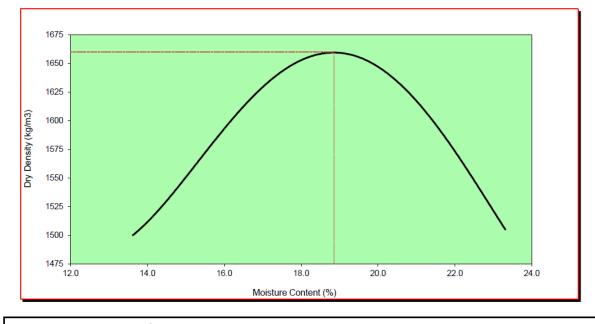
TP33-34C

CALCULATION OF SAFE BEARING CAPACITY: MN33 (TP33-34C) MN34						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
DEPTH:	1.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESCRIPTION: ELASTIC SILT				Sample No.:	1218	

LABORATORY TEST RESULTS						
SHEARBOX		DENSITY				
$C(kN/m^2) =$	31	γ (kg/m ³) = 2036				
ø (°) =	25	γ (kN/m ³) = 19.97				

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 20.72	
	N _q = 10.66	
Whitlow. R Basic Soil Mech.	N _γ = 6.77	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 1.0	
	q _f = (1.3 x 31 x 20.72) + (0.8 x 19.97 x 1.0 x 10.66) + (0.4 x 19.97 x 1.0 x 6.77)	1059 kN/m²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 1059/3.0	353 kN/m ²

Calculations By: B.K.


Checked: <u>WK</u>

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN33

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.7M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/12		Sample No.:	1111
Material Description:	SILTY SAND WITH GRAVEL		Sample Ref: TP MN 33			Date received:	09.12.2012
Moisture Ado	dition	100cc	150cc	200cc	250cc	300cc	350cc
Mass of Mou	ld+Base+Soil	5699	5830	5939	5976	5933	5851
Mass of Moul	ld+Base	3995	3995	3995	3995	3995	3995
Mass of Compacted Soil 1704		1704	1835	1944	1981	1938	1856
Bulk Density	(Kgs/m ³)	1704	1835	1944	1981	1938	1856
Tin No.		G16	G27	G21	G43	G09	G21
Weight Wet S	Soil	297.0	275.1	317.7	292.1	307.2	329.5
Weight of Dry	/ Soil	261.4	237.6	269.5	244.0	252.8	267.2
Weight of Water 35.6		37.5	48.2	48.1	54.4	62.3	
Moisture Cor	ntent (%)	13.6	15.8	17.9	19.7	21.5	23.3

Maximum Dry Density (Kg/m³): <u>1660</u>

Optimum Moisture Content (%): <u>18.8%</u>

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN33			
Depth	2.7m		
рН	7.85		
Chloride(%) mg/l	0.46		
Sulphate (mg/l)	0.001		

TP33-34A				
Depth	1.2m			
рН	7.72			
Chloride(%) mg/l	0.008			
Sulphate (mg/l)	0.021			

TP33-34B			
Depth	1.8m		
рН	8.01		
Chloride(%) mg/l	0.010		
Sulphate (mg/l)	0.038		

TP33-34C				
Depth	2.0m			
рН	7.08			
Chloride(%) mg/l	0.011			
Sulphate (mg/l)	0.020			

INSITU DENSITY TEST

TP33-34C			
Depth (m)	2.0		
Bulk density (kg/m3)	1634		
Moisture Content (%)	35.9		
Dry Density (kg/m3)	1202		
Maximum Dry Density (kg/m3)	1463		
Relative Compaction (%)	82.2		

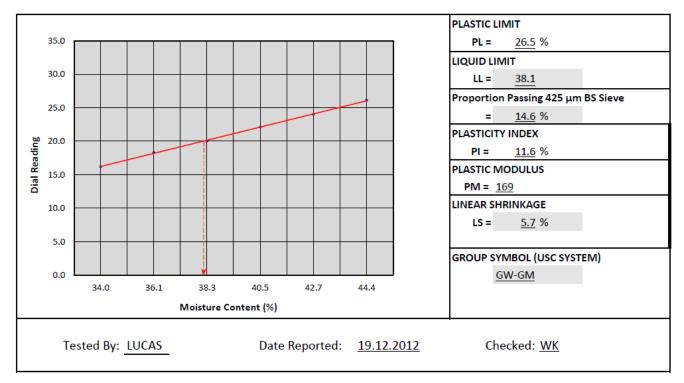
ANGLE POINT 33 LOG

DATE	t:	03.09.12.2012
LOGGED	BY:	LUCAS
		MN 33
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
	0.9	Brownish Red Elastic SILT with Sand
Δ	1.7	Browniish /Reddish Grey Highly weathered and fragmented Rock strata

TEST POINT 33-34A, 33-34B, 33-34C LOGS

JOB REF:		GCL/NCE_356/03
		(TP33-34A) MN34
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	0.8	Brownish Red Sandy SILT
	1.2	Grey Fragmented ROCK boulders and cobble fractions

		NANYUKI-ISIOLO-MERU POWERLINE			GCL/NCE_356/03	
5	TE:	NANYUKI-ISIOLO-MERU				
		MN33 (TP33-34B) MN34		MN33 (TP33-34C) MN34		
SCALE	LEGEND DEPTH (m)	MATERIAL DESCRIPTION	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	
0 0.5 1 1.5 2	× × × × × × × × × × × × × × × × × × ×			2.0		


SEGMENT 33

ATTERBERG LIMITS BS 1377 - 2: 1990

MN34

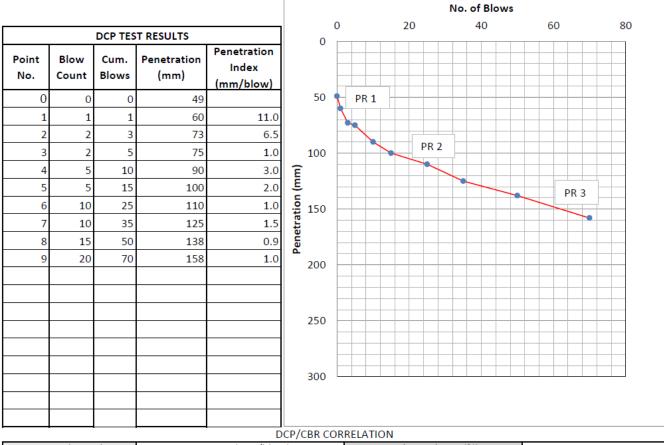
Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
	GRAVEL WITH SILT AND				
Material Description:	SAND	Job Reference:	GCL/TGA-342/12	Sample No.:	1112
Sampled By:	GCL	Depth:	1.3M	Date Tested:	18.12.2012

			LIQUID	LIMIT			PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.3	20.0	22.1	24.0	26.1	-	-	
Tin No	42	51	63	35	62	14	9	24	
Mass of Wet Soil (g)	40.88	30.81	45.67	39.23	36.30	40.52	21.53	17.90	
Mass of Dry Soil (g)	30.51	22.64	33.02	27.92	25.44	28.06	17.03	14.14	
Mass of Moisture (g)	10.37	8.17	12.65	11.31	10.86	12.46	4.50	3.76	
Moisture Content (%)	34.0	36.1	38.3	40.5	42.7	44.4	26.4	26.6	26

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN34

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 34	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	WELL-GRADED GRAVEL WITH SILT AND SA	JOB REF:	GCL/TGA-342/12	DATE TESTED:	18.12.2012
SAMPLED BY:	GCL	DEPTH:	1.3M	SAMPLE No.:	1112



DCP - CBR CORRELATION

MN34

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 34	Date of Test:	04.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	1.3M	Sample No.	1112

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	11	19.9	
PR 2	3.3	93.0	
PR 3	1.1	379.3	

Test By: LUCAS

Checked: WK

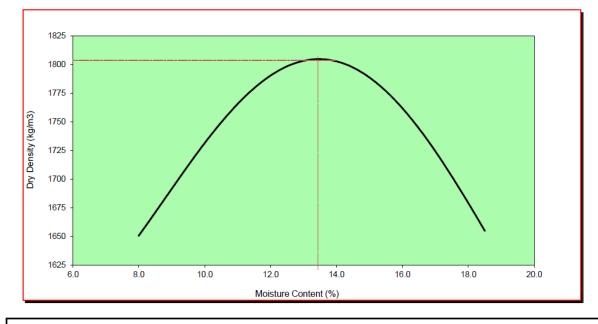
ANGLE POINT BEARING CAPACITY

MN34

CALCULATION OF SAFE BEARING CAPACITY: TP MN 34							
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012	
DEPTH:	1.3M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DESCRIPTION: GRAVEL WIT			"H SILT AND S	AND	Sample No.:	1112	

LABORATORY TEST	r RESULTS		
SHEARBOX		DENSITY	
$C(kN/m^2) =$	30	γ (kg/m ³) = 2047	
ø (°) =	25	$y(kN/m^3) = 20.08$	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 20.72	
Whitlow. R	$N_q = 10.66$	
Basic Soil Mech.	N _y = 6.77	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.3	
	q _f = (1.3 x 30 x 20.72) + (0.8 x 20.08 x 1.3 x 10.66) + (0.4 x 20.08 x 1.0 x 6.77)	1085 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 1085/3.0	362 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN34

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	1.3M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1112
Material Description:	GRAVEL WITH SILT AND SAND		Sample Ref: TP MN 34			Date received:	09.12.2012
Moisture Ado	lition	Occ	50cc	100cc	150cc	200cc	250cc
Mass of Moul	d+Base+Soil	5777	5905	6006	6054	6024	5956
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1782	1910	2011	2059	2029	1961
Bulk Density	(Kgs/m ³)	1782	1910	2011	2059	2029	1961
Tin No.		G03	G57	G08	G52	G21	G28
Weight Wet S	oil	227.1	257.7	278.1	288.7	321.9	283.7
Weight of Dry	/ Soil	210.3	234.1	247.9	252.4	276.1	239.4
Weight of Wa	ter	16.8	23.6	30.2	36.3	45.8	44.3
Moisture Cor	itent (%)	8.0	10.1	12.2	14.4	16.6	18.5

Maximum Dry Density (Kg/m³): <u>1805</u>

Optimum Moisture Content (%): <u>13.4s%</u>

Tested By: STEVE

Checked By: WK

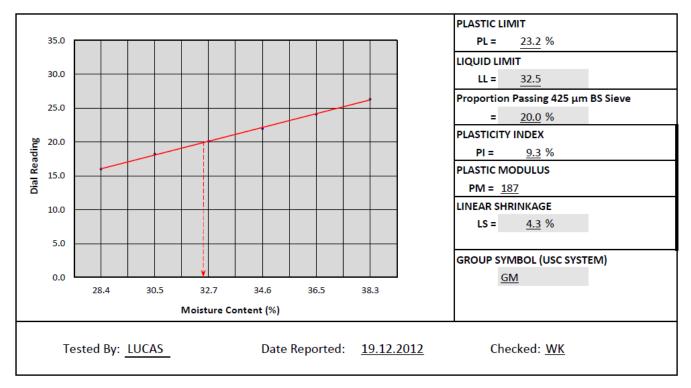
Date Reported: 25.01.2013

CHEMICAL ANALYSIS

Angle Point MN34					
Depth	1.3m				
рН	8.2				
Chloride(%) mg/l	0.87				
Sulphate (mg/l)	0.002				

ANGLE POINT 34 LOG

PR	OJ ECT:	N AN	YUKI-ISIO LO - MERU POWERLINE		
S	ITE:		N ANYUKI-ISIOLO-MERU		
		MN 34			
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION		
0.5			Brownish Red Elastic SILT with Sand		
		0.9			
1	Δ	1.3	Brownish/Reddish Grey Highly weathered and fragmented Rock strata		
1.5	V				
2					
2.5					


SEGMENT 34

ATTERBERG LIMITS BS 1377 - 2: 1990

MN35

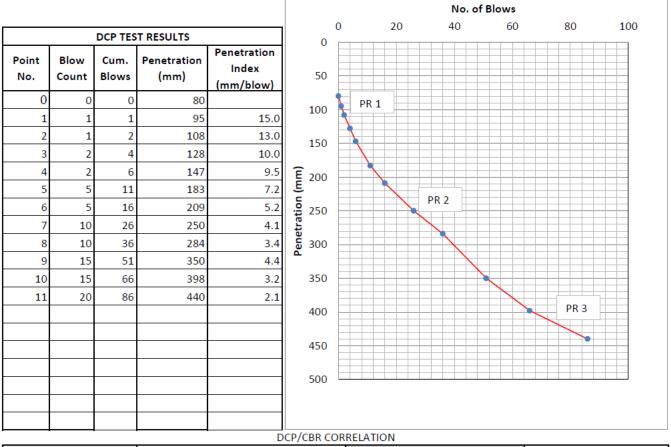
Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SILTY GRAVEL WITH SAND	Job Reference:	GCL/TGA-342/12	Sample No.:	1113
Sampled By:	GCL	Depth:	1.0M	Date Tested:	18.12.2012

			LIQUID	LIMIT			PL	PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-		
Final Gauge Reading (mm)	16.0	18.2	20.1	22.0	24.1	26.3	-	-		
Tin No	27	13	17	43	64	57	9	1		
Mass of Wet Soil (g)	37.51	42.36	48.59	41.40	51.06	43.26	26.29	29.40		
Mass of Dry Soil (g)	29.21	32.46	36.61	30.76	37.41	31.28	21.37	23.84		
Mass of Moisture (g)	8.30	9.90	11.98	10.64	13.65	11.98	4.92	5.56		
Moisture Content (%)	28.4	30.5	32.7	34.6	36.5	38.3	23.0	23.3	23	

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN35

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 35	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SILTY GRAVEL WITH SAND	JOB REF:	GCL/TGA-342/12	DATE TESTED:	18.12.2012
SAMPLED BY:	GCL	DEPTH:	1.0M	SAMPLE No.:	1113



DCP - CBR CORRELATION

MN35

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 35	Date of Test:	05.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	1.0M	Sample No.	1113

DCP/CBR COR	RELATION
mm /hlow)	Eatin

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	13	16.1	
PR 2	7.2	34.2	
PR 3	3.4	89.5	

Test By: LUCAS

Checked:

WK

ANGLE POINT BEARING CAPACITY

MN35

CALCULATION OF SAFE BEARING CAPACITY: TP MN 35						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH:	1.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12
MATERIAL DE	MATERIAL DESCRIPTION: SILTY GRAVE)	Sample No.:	1113

LABORATORY TEST	RESULTS			
SHEARBOX		DENSITY		
$C(kN/m^2) =$	29	γ (kg/m ³) =	2045	
ø (°) =	22	γ (kN/m³) =	20.06	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 16.88	
Whitlow. R	$N_q = 7.82$	
Basic Soil Mech.	N _y = 4.07	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.0	
	q _f = (1.3 x 29 x 16.88) + (0.8 x 20.06 x 1.0 x 7.82) + (0.4 x 20.06 x 1.0 x 4.07)	795 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 795/3.0	265 kN/m ²

Calculations By: B.K.


Checked: WK

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN35

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	1.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1113
Material Description:	SILTY GRAVEL WITH SAND	H SAND Sample Ref:		TP MN 35		Date received:	09.12.2012
Moisture Ado	dition	50cc	100cc	150cc	200cc	250cc	300cc
Mass of Mould+Base+Soil		5781	5902	6001	6050	6012	5947
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1786	1907	2006	2055	2017	1952
Bulk Density	(Kgs/m ³)	1786	1907	2006	2055	2017	1952
Tin No.		G22	G14	G06	G36	G25	G49
Weight Wet S	Soil	227.6	240.7	263.7	306.4	258.7	264.9
Weight of Dry Soil		206.2	214.5	231.3	263.9	218.7	219.8
Weight of Wa	ater	21.4	26.2	32.4	42.5	40.0	45.1
Moisture Cor	ntent (%)	10.4	12.2	14.0	16.1	18.3	20.5

Maximum Dry Density (Kg/m³): <u>1775</u>

Optimum Moisture Content (%): <u>15.2%</u>

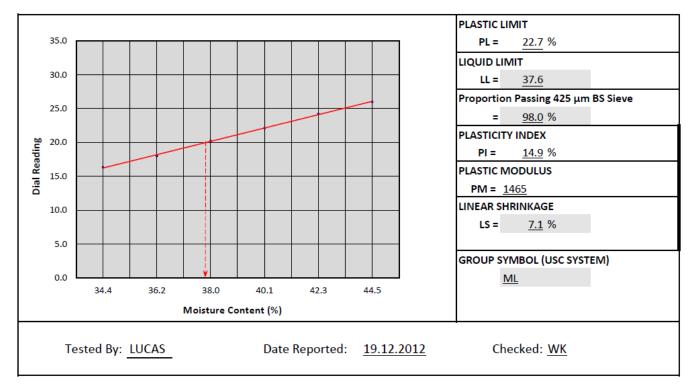
Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN35					
Depth	1.0m				
рН	8.04				
Chloride(%) mg/l	0.69				
Sulphate (mg/l)	0.002				

ANGLE POINT 35 LOG

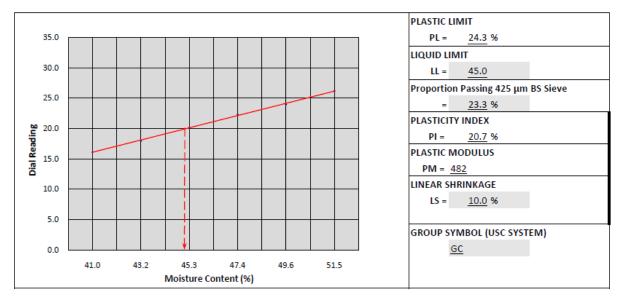
JOB REF:		GCL/NCE_342/12		
MN 35				
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION		
	0.1	Dark Grey SILT		
	1.0	Brown Silty Sand with Gravel and Fragmented Rock Boulders		


SEGMENT 35

ATTERBERG LIMITS BS 1377 - 2: 1990

MN36

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY SILT	Job Reference:	GCL/TGA-342/12	Sample No.:	1114
Sampled By:	GCL	Depth:	1.6M	Date Tested:	18.12.2012

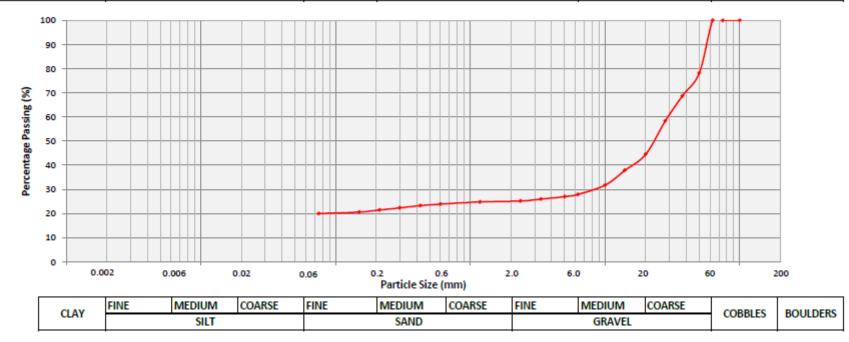

			LIQUID	LIMIT			PL	ASTIC LIN	/IT
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.0	20.2	22.1	24.2	26.0	-	-	
Tin No	21	12	16	25	48	7	45	68	
Mass of Wet Soil (g)	46.50	34.31	37.80	42.06	52.88	38.15	25.81	22.65	
Mass of Dry Soil (g)	34.60	25.19	27.40	30.02	37.16	26.40	21.05	18.46	
Mass of Moisture (g)	11.90	9.12	10.40	12.04	15.72	11.75	4.76	4.19	
Moisture Content (%)	34.4	36.2	38.0	40.1	42.3	44.5	22.6	22.7	22

TP36-37

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN36 (TP36-37)MN37	Date Received:	06.03.2013
Material Description:	Clayey GRAVEL	Job Reference:	GCL/NAS-356/13	Sample No.:	1219
Sampled By:	GEO CON	Depth:	1.2M	Date Tested:	20.03.2013

			LIQUID	LIMIT			PL	ASTIC LIN	ЛIТ
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm) 0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.1	18.0	20.2	22.3	24.0	26.2	-	-	
Tin No	62	35	24	16	59	54	7	20	ł
Mass of Wet Soil (g)	43.01	53.86	50.23	59.27	58.39	64.75	15.77	20.07	1
Mass of Dry Soil (g)	30.50	37.61	34.57	40.21	39.03	42.74	12.70	16.13	1
Mass of Moisture (g)	12.51	16.25	15.66	19.06	19.36	22.01	3.07	3.94	
Moisture Content (%)	41.0	43.2	45.3	47.4	49.6	51.5	24.2	24.4	2

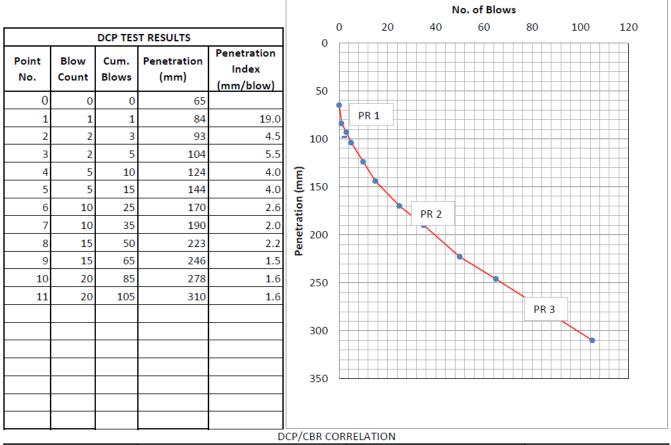
PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN36

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 36	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY SILT	JOB REF:	GCL/TGA-342/12	DATE TESTED:	18.12.2012
SAMPLED BY:	GCL	DEPTH:	1.6M	SAMPLE No.:	1114

TP36-37

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN36(TP36-37)MN37	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	Clayey GRAVEL	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	1.2M	SAMPLE No.:	1219



DCP - CBR CORRELATION

MN36

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Locatior	MN 36	Date of Test:	05.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	1.6M	Sample No.	1114

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	19	9.9	
PR 2	4	72.7	
PR 3	1.8	202.0	

Test By: LUCAS

ANGLE POINT BEARING CAPACITY

MN36

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 36					
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH:	DEPTH: 1.6M			EASTERN	JOB No.:	GCL/TGA_342/12
MATERIAL DE	MATERIAL DESCRIPTION: SANDY SILT				Sample No.:	1114

LABORATORY TEST RESULTS

SHEARBOX		DENSITY		
$C(kN/m^2) =$	22	y (kg/m ³) =	1878	
ø (°) =	18	γ (kN/m ³) =	18.42	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 13.10	
Whitlow. R	N _q = 5.26	
Basic Soil Mech.	N _γ = 2.00	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.6	
	q _f = (1.3 x 22 x 13.10) + (0.8 x 18.42 x 1.6 x 5.26) + (0.4 x 18.42 x 1.0 x 2.00)	513 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 513/3.0	171 kN/m ²

Calculations By: B.K.

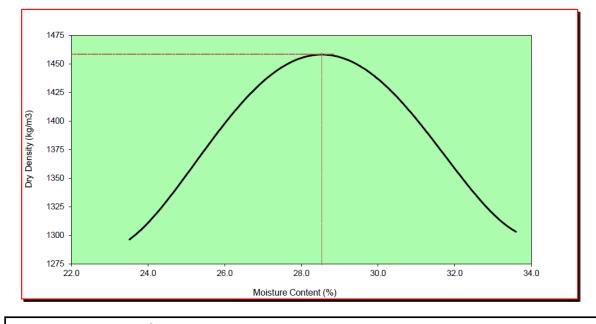
Checked: WK

TP36-37

	с	ALCULATION O	F SAFE BEAF	RING CAPACITY: TMN36	5 (TP36-37) MN37	
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
DEPTH:	1.6M	1.6M		EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESCRIPTION: CLAYEY GRAVEL				Sample No.:	1108	

LABORATORY TEST R	ESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	28	γ (kg/m ³) = 1796
ø (°) =	23	γ (kN/m ³) = 17.62

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
	N _q = 8.66	
Whitlow. R Basic Soil Mech.	N _γ = 4.82	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 1.6	
	q _f = (1.3 x 28 x 18.05) + (0.8 x 17.62 x 1.6 x 8.66) + (0.4 x 17.62 x 1.0 x 4.82)	886 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 886/3.0	295 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN36

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	1.6M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1114
Material Description:	SANDY SILT		Sample Ref: TP MN 36			Date received:	09.12.2012
Moisture Ado	dition	100cc	150cc	200cc	250cc	300cc	350cc
Mass of Mould+Base+Soil		5596	5737	5840	5874	5814	5736
Mass of Mou	ld+Base	3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1601	1742	1845	1879	1819	1741
Bulk Density	(Kgs/m ³)	1601	1742	1845	1879	1819	1741
Tin No.		G24	G14	G34	G07	G21	G12
Weight Wet S	Soil	324.1	291.4	343.4	290.7	321.3	312.1
Weight of Dry	/ Soil	262.4	231.8	269.3	224.9	244.5	233.6
Weight of Wa	iter	61.7	59.6	74.1	65.8	76.8	78.5
Moisture Cor	ntent (%)	23.5	25.7	27.5	29.3	31.4	33.6

Maximum Dry Density (Kg/m³): <u>1460</u>

Optimum Moisture Content (%): 28.6%

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN36					
Depth	1.6m				
рН	8				
Chloride(%) mg/l	0.61				
Sulphate (mg/l)	0.001				

TP36-37						
Depth	1.2m					
рН	7.20					
Chloride(%) mg/l	0.008					
Sulphate (mg/l)	0.030					

ANGLE POINT 36 LOG

DATE	<u>i:</u>	03.09.12.2012
LOGGED	BY:	LUCAS
		MN 36
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION
<u> </u>	1.6	Redd ish Brown Elastic SILT
V		

TEST POINT 36-37 LOG

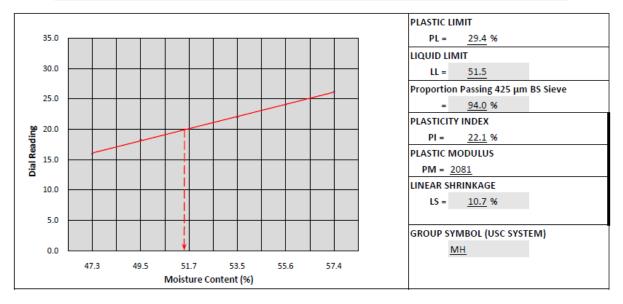
DATE	2:	23 - 28.02.2013		
LOGGED	BY:	STEVE		
	MN36	6 (TP36-37) MN37		
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION		
* * * * * * * * *	0.8	Greyish Brown Sandy SILT		
F.	1.2	Grey Clayey GRAVEL with cobble and rock fractions		


SEGMENT 36

ATTERBERG LIMITS BS 1377 - 2: 1990

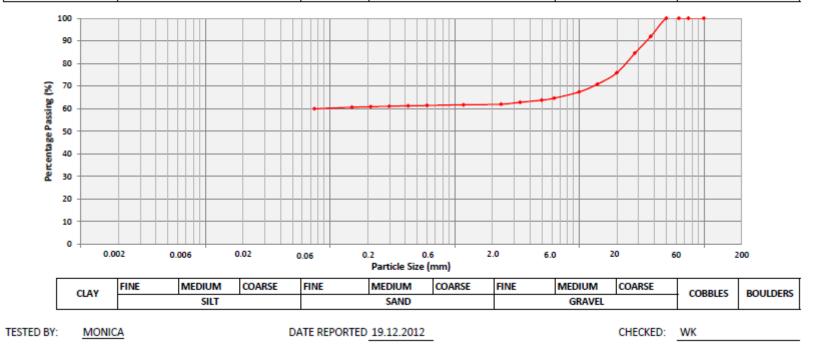
MN37

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY LEAN CLAY	Job Reference:	GCL/TGA-342/12	Sample No.:	1115
Sampled By:	GCL	Depth:	1.0M	Date Tested:	18.12.2012

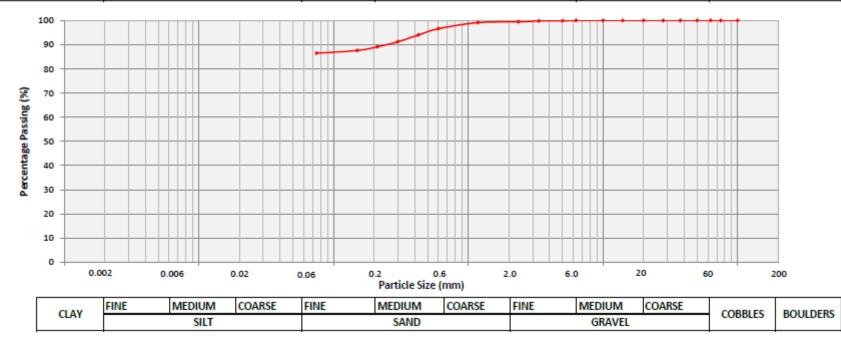

		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.2	18.3	20.0	22.4	24.2	26.0	-	-	
Tin No	21	12	20	14	1	92	32	15	
Mass of Wet Soil (g)	34.20	33.98	41.25	38.74	44.93	42.77	20.32	24.55	
Mass of Dry Soil (g)	23.41	22.96	27.46	25.42	29.06	27.33	16.00	19.30	
Mass of Moisture (g)	10.79	11.02	13.79	13.32	15.87	15.44	4.32	5.25	
Moisture Content (%)	46.1	48.0	50.2	52.4	54.6	56.5	27.0	27.2	27

TP37-38

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN37 (TP37-38)MN38	Date Received:	06.03.2013
Material Description:	Elastic SILT	Job Reference:	GCL/NAS-356/13	Sample No.:	1220
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	20.03.2013


		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.0	18.3	20.1	22.0	24.1	26.2	-	-	
Tin No	22	12	32	26	15	48	67	49	
Mass of Wet Soil (g)	58.52	60.11	54.68	50.90	67.65	58.41	33.84	28.99	1
Mass of Dry Soil (g)	39.74	40.21	36.04	33.16	43.48	37.11	26.17	22.40	1
Mass of Moisture (g)	18.78	19.90	18.64	17.74	24.17	21.30	7.67	6.59	
Moisture Content (%)	47.3	49.5	51.7	53.5	55.6	57.4	29.3	29.4	2

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN37

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 37	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY LEAN CLAY	JOB REF:	GCL/TGA-342/12	DATE TESTED:	18.12.2012
SAMPLED BY:	GCL	DEPTH:	1.0M	SAMPLE No.:	1115

TP37-38

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN37(TP37-38)MN38	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	Elastic SILT	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1218

DCP - CBR CORRELATION

MN37

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 37	Date of Test:	05.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	1.0M	Sample No.	1115

								No. o	fBlows		
	DCP TEST RESULTS				0	20	40	60	80	100	
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)	0						
0	0	0	57		50	•					
1	1	1	87	30.0		PR 1	7				
2	1	2	100	13.0							
3	1	3	114	14.0	100	\					
4	1	4	125	11.0	(m						
5	1	5	134	9.0	Penetration (mm)		PR 2				
6	2	7	144	5.0	1 50						
7	2	9	149	2.5	etra			•		PR 3	
8	5	14	155	1.2	ene					•	
9	5	19	158	0.6	200						
10	10	29	163	0.5							
11	15	44	168	0.3							
12	20	64	174	0.3	250						
13	25	89	175	0.0	250						
					300						
					500						
Deces	tration Ir	alau	۸		CP/CBR CO	RRELATIC		ated CDD /0/			
Pene	tration Ir	luex	AVe	erage (mm/blov	v)		Esum	ated CBR (%	1		

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	30	5.5	
PR 2	8	29.9	
PR 3	0.3	2001.2	

Test By: LUCAS

ANGLE POINT BEARING CAPACITY

MN37

CALCULATION OF SAFE BEARING CAPACITY: TP MN 37						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH:	1.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12
MATERIAL DESCRIPTION: SANDY LEAN CLAY Sample No.: 1115					1115	

LABORATORY TEST RESULTS						
SHEARBOX		DENSITY				
$C(kN/m^2) =$	23	γ (kg/m³) =	1833			
ø (°) =	20	y (kN/m ³) =	17.98			

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
Whitlow. R	$N_q = 6.40$	
Basic Soil Mech.	N _y = 2.87	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 1.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 17.98 x 1.0 x 6.40) + (0.4 x 17.98 x 1.0 x 2.87)	556 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 556/3.0	185 kN/m ²

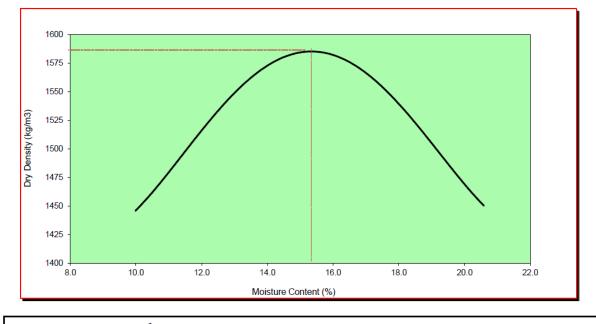
Calculations By: B.K.

TP37-38

CALCULATION OF SAFE BEARING CAPACITY: MN37 (TP37-38)MN38						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013
DEPTH:	1.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03
MATERIAL DESC	RIPTION:	ELASTIC SILT			Sample No.:	1220

LABORATORY TEST RESULTS							
SHEARBOX		DENSITY					
$C(kN/m^2) =$	26	γ (kg/m³) = 1918					
ø (°) =	23	γ (kN/m ³) = 18.82					

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 18.05	
	N _q = 8.66	
Whitlow. R Basic Soil Mech.	N _γ = 4.82	
Tomlinson. M.J. Foundation Design &	The Ultimate Bearing Capacity of a Pad Foundation	
Construction	B(m)= 1.0	
	Z (m)= 1.0	
	q _f = (1.3 x 26 x 18.05) + (0.8 x 18.82 x 1.0 x 8.66) + (0.4 x 18.82 x 1.0 x 4.82)	777 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 777/3.0	259 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN37

Project:	PROPOSED POWERLINE	LOCATION:	EASTERN		Depth:	1.0M	
Site:	NANYUKI-ISIOLO-MERU	Job Ref.:	GCL/TGA-342/	12	Sample No.:	1115	
Material Description:	SANDY LEAN CLAY	Sample Ref: TP MN 37			Date received:	09.12.2012	
Moisture Ado	dition	150cc	200cc	250cc	300cc	350cc	400cc
Mass of Mould+Base+Soil		5585	5699	5796	5833	5801	5744
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1590	1704	1801	1838	1806	1749
Bulk Density	(Kgs/m ³)	1590	1704	1801	1838	1806	1749
Tin No.		G40	G12	G29	G16	G55	G20
Weight Wet S	Soil	296.3	305.9	239.2	280.9	309.4	286.4
Weight of Dry	/ Soil	269.4	272.9	209.3	241.7	261.3	237.5
Weight of Water 26.9		33.0	29.9	39.2	48.1	48.9	
Moisture Cor	ntent (%)	10.0	12.1	14.3	16.2	18.4	20.6

Maximum Dry Density (Kg/m³): <u>1588</u>

Optimum Moisture Content (%): <u>15.4%</u>

Tested By: STEVE

Date Reported: 25.01.2013

Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN37				
Depth	1.0m			
рН	7.62			
Chloride(%) mg/l	0.32			
Sulphate (mg/l)				

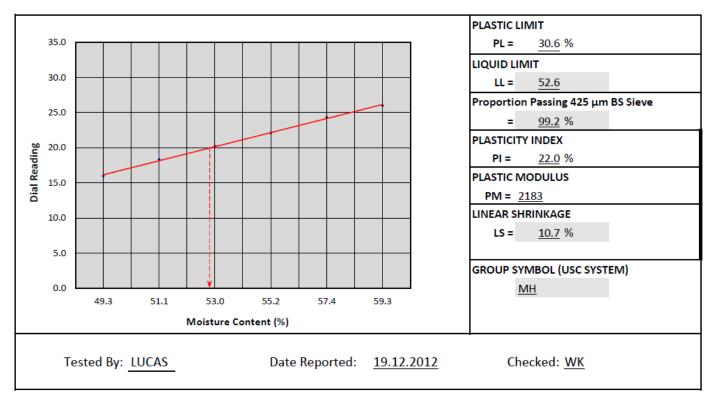
TP37-38				
Depth	2.0m			
рН	7.04			
Chloride(%) mg/l	0.007			
Sulphate (mg/l)	0.017			

INSITU DENSITY TEST

TP37-38		
Depth (m)	2.0	
Bulk density (kg/m3)	1572	
Moisture Content (%)	37.3	
Dry Density (kg/m3)	1145	
Maximum Dry Density (kg/m3)	1440	
Relative Compaction (%)	79.5	

ANGLE POINT 37 LOG

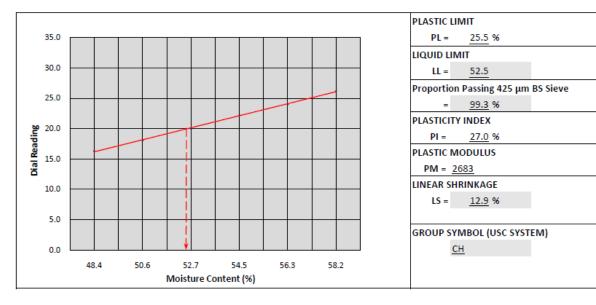
PROJECT:		N AN	AN YUKI-ISIO LO • MERU POWERLINE	
SITE:		NANYUKI-ISIOLO-MERU		
	MN 37			
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION	
0.5		0.8	Brownish Red Elastic SILT	
1	<u> </u>		Dark Brown GRAVEL	
1.5			Fragmented ROCK strata	
2				
2.5				


SEGMENT 37

ATTERBERG LIMITS BS 1377 - 2: 1990

MN38

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY ELASTIC SILT	Job Reference:	GCL/TGA-342/12	Sample No.:	1116
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012

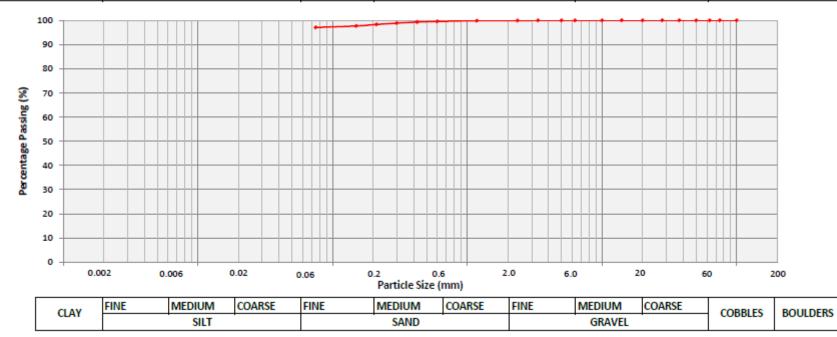

		LIQUID LIMIT					PLASTIC LIMIT		
Test No.	o. 1 2 3 4 5			5	6	1	2	Av.	
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.0	18.3	20.2	22.1	24.3	26.0	-	-	
Tin No	2118	47	57	59	68	40	21	31	
Mass of Wet Soil (g)	27.19	28.77	33.50	38.46	41.14	36.85	33.93	37.17	1
Mass of Dry Soil (g)	18.21	19.04	21.90	24.78	26.14	23.13	26.02	28.42	1
Mass of Moisture (g)	8.98	9.73	11.60	13.68	15.00	13.72	7.91	8.75]
Moisture Content (%)	49.3	51.1	53.0	55.2	57.4	59.3	30.4	30.8	30.

TP38-39

Project:	NANYUKI ISIOLO MERU POW	Site / Location:	MN38 (TP38-39)MN39	Date Received:	06.03.2013
Material Description:	Fat CLAY	Job Reference:	GCL/NAS-356/13	Sample No.:	1221
Sampled By:	GEO CON	Depth:	2.0M	Date Tested:	20.03.2013

		LIQUID LIMIT				PL	/IT		
Test No.	1	2	3	4	5	6	1	2	Av.
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Final Gauge Reading (mm)	16.3	18.1	20.0	22.2	24.0	26.2	-	-	
Tin No	20	3	25	16	35	14	26	37	
Mass of Wet Soil (g)	66.72	63.30	53.62	57.54	65.22	56.90	17.94	23.51	1
Mass of Dry Soil (g)	44.96	42.03	35.12	37.24	41.73	35.97	14.31	18.72	1
Mass of Moisture (g)	21.76	21.27	18.50	20.30	23.49	20.93	3.63	4.79]
Moisture Content (%)	48.4	50.6	52.7	54.5	56.3	58.2	25.4	25.6	2

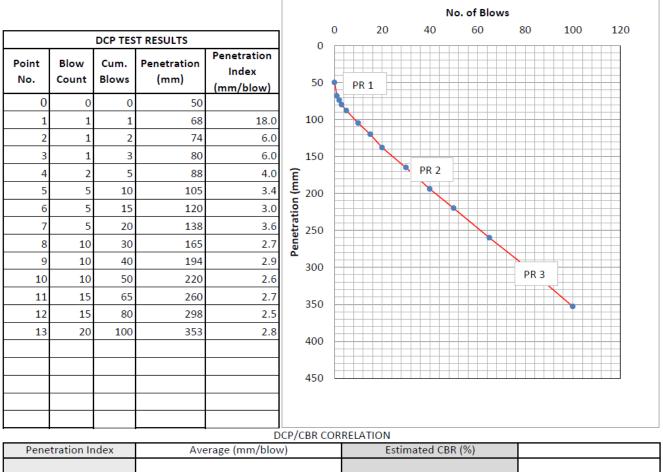
PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990


MN38

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 38	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY ELASTIC SILT	JOB REF:	GCL/TGA-342/12	DATE TESTED:	18.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1116

TP38-39

PROJECT:	NANYUKI ISIOLO MERU POWERLINE	LOCATION	MN38(TP38-39)MN39	DATE RECEIVED:	09.02.2013
MATERIAL DESCRIPTION:	Fat CLAY	JOB REF:	GCL/NAS-355/13	DATE TESTED:	14.03.2013
SAMPLED BY:	GEOCON LIMITED	DEPTH:	2.0M	SAMPLE No.:	1219



DCP - CBR CORRELATION

MN38

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 38	Date of Test:	05.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1116

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	18	10.6	
PR 2	4	72.7	
PR 3	2.6	126.1	

Test By: LUCAS

ANGLE POINT BEARING CAPACITY

MN38

	CALCULATION OF SAFE BEARING CAPACITY: TP MN 38							
PROJECT:	PROJECT: PROPOSED POWERLINE SITE: NANYUKI-ISIOLO-MERU DATE RECEIVED: 09.12.2012							
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12		
MATERIAL DE	MATERIAL DESCRIPTION: SANDY ELASTIC SILT Sample No.: 1116							

LABORATORY TES	LABORATORY TEST RESULTS						
SHEARBOX		DENSITY					
$C(kN/m^2) =$	23	γ (kg/m³) = 1	1887				
ø (°) =	20	γ(kN/m ³) = 1	8.51				

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	$q_f = 1.3$ cNc + 0.8 γ ZNq + 0.4 γ BN γ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 14.83	
Whitlow. R	$N_q = 6.40$	
Basic Soil Mech.	N _y = 2.87	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 14.83) + (0.8 x 18.51 x 2.0 x 6.40) + (0.4 x 18.51 x 1.0 x 2.87)	654 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 654/3.0	218 kN/m ²

Calculations By: B.K.

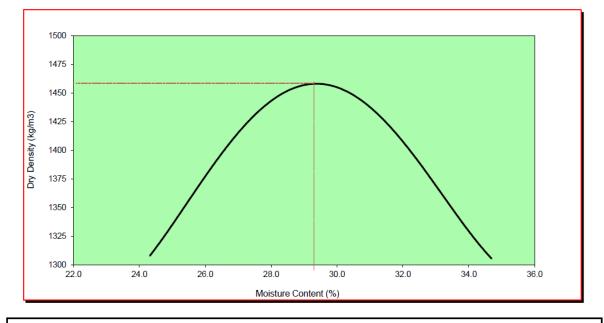
Checked: WK

TP38-39

CALCULATION OF SAFE BEARING CAPACITY: MN38 (TP38-39) MN39								
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	06.03.2013		
DEPTH:	2.0M		LOCATION:	EASTERN	JOB No.:	GCL/NC_356/03		
MATERIAL DE	MATERIAL DESCRIPTION: FAT CLAY Sample No.: 1221							

LABORATORY TEST R	ESULTS	
SHEARBOX		DENSITY
$C(kN/m^2) =$	23	γ (kg/m ³) = 1873
ø (°) =	15	γ(kN/m ³) = 18.38

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8yZNq + 0.4y BNy	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 10.98	
	N _q = 3.94	
Whitlow. R Basic Soil Mech.	N _y = 1.13	
Tomlinson. M.J. Foundation Design &	R Basic ech. m. M.J. ation n & iction B(m)= 1.0	
Construction	B(m)= 1.0	
	Z (m)= 2.0	
	q _f = (1.3 x 23 x 10.98) + (0.8 x 18.38 x 2.0 x 3.94) + (0.4 x 18.38 x 1.0 x 1.13)	452 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 706/3.0	151 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN38

Project:	PROPOSED POWERLINE		LOCATION:	EASTERN		Depth:	2.0M
Site:	NANYUKI-ISIOLO-MERU		Job Ref.:	GCL/TGA-342/	12	Sample No.:	1116
Material Description:	SANDY ELASTIC SILT	Sample Ref:	Sample Ref: TP MN 38			09.12.2012	
Moisture Ado	dition	200cc	250cc	300cc 350cc		400cc	450cc
Mass of Mould+Base+Soil		5621	5760	5859	5882	5837	5753
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil 1620		1626	1765	1864	1887	1842	1758
Bulk Density	(Kgs/m ³)	1626	1765	1864	1887	1842	1758
Tin No.		G13	G59	G52	G37	G18	G34
Weight Wet S	Soil	310.3	282.3	308.9 370.6		313.2	333.5
Weight of Dry	/ Soil	249.6	223.2	240.6	283.8	236.4	247.6
Weight of Water 60.7		60.7	59.1	<mark>68.3</mark>	86.8	76.8	<mark>85.9</mark>
Moisture Cor	ntent (%)	24.3	26.5	28.4	30.6	32.5	34.7

Maximum Dry Density (Kg/m³): <u>1458</u>

<u>29.4%</u> **Optimum Moisture Content (%):**

Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

Angle Po	int MN38
Depth	2.0m
рН	7.84
Chloride(%) mg/l	0.39
Sulphate (mg/l)	0.002

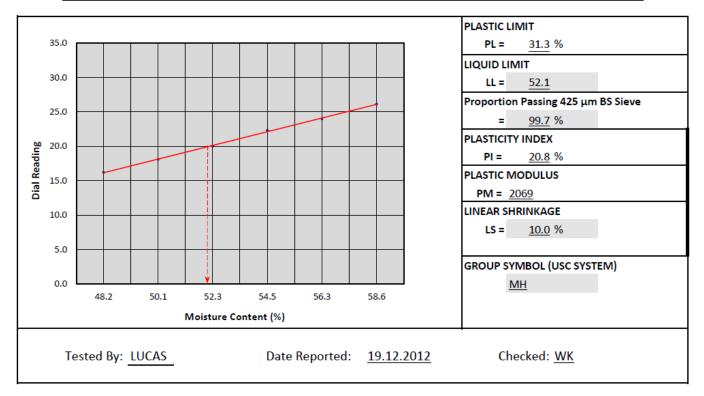
TP3	8-39
Depth	2.0m
рН	7.08
Chloride(%) mg/l	0.005
Sulphate (mg/l)	0.013

ANGLE POINT 38 LOG

JOB REF:		GCL/NCE_342/12
		MN 38
LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
	2.0	Brownish Red Elastic SILT
V		

TEST POINT 38-39 LOG

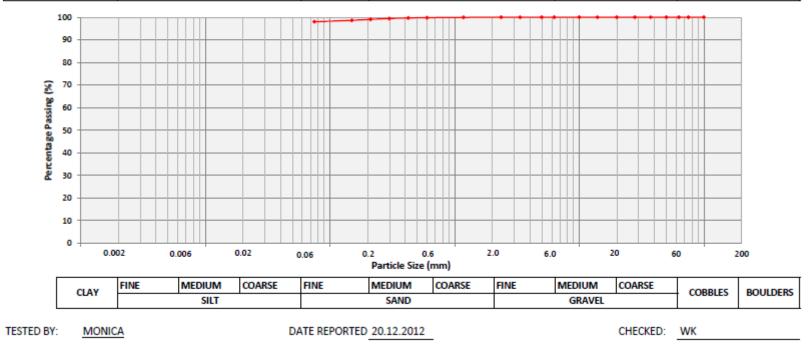
PR	O JECT:	NANY	/UKI-ISIOLO-MERU POWERLINE
5	SITE:		NANYUKI-ISIOLO-MERU
		MN38	(TP38-39) MN39
SCALE	LEGEND	DEPTH (m)	MATERIAL DESCRIPTION
0.5		15	Dark Grey CLAY (Black Cotton Soil)
1.5		1.5	Grey Sandy CLAY
2	~~~	2.0	or cy surray can r
2.5			


SEGMENT 38

ATTERBERG LIMITS BS 1377 - 2: 1990

MN39

Project:	PROPOSED POWERLINE	Site / Location:	NANYUKI-ISIOLO-MERU	Date Received:	09.12.2012
Material Description:	SANDY ELASTIC SILT	Job Reference:	GCL/TGA-342/12	Sample No.:	1117
Sampled By:	GCL	Depth:	2.0M	Date Tested:	18.12.2012


		LIQUID LIMIT							PLASTIC LIMIT		
Test No.	1	2	3	4	5	6	1	2	Av.		
Initial Gauge Reading (mm)	0.0	0.0	0.0	0.0	0.0	0.0	-	-			
Final Gauge Reading (mm)	16.2	18.1	20.0	22.3	24.0	26.1	-	-			
Tin No	16	25	41	15	9	24	1	47			
Mass of Wet Soil (g)	52.17	55.75	51.67	63.24	66.87	61.98	20.35	23.69			
Mass of Dry Soil (g)	35.20	37.14	33.92	40.93	42.77	39.08	15.49	18.04			
Mass of Moisture (g)	16.97	18.61	17.75	22.31	24.10	22.90	4.86	5.65			
Moisture Content (%)	48.2	50.1	52.3	54.5	56.3	58.6	31.4	31.3	31		

PARTICLE SIZE ANALYSIS BS 1377 - 2: 1990

MN39

PROJECT:	PROPOSED POWERLINE	LOCATION	MN 39	DATE RECEIVED:	09.12.2012
MATERIAL DESCRIPTION:	SANDY ELASTIC SILT	JOB REF:	GCL/TGA-342/12	DATE TESTED:	18.12.2012
SAMPLED BY:	GCL	DEPTH:	2.0M	SAMPLE No.:	1117

DCP - CBR CORRELATION

MN39

NESHCONSULT ENGINEERING

Project:	PROPOSED POWERLINE	Location:	EASTERN	Test Location	MN 39	Date of Test:	05.12.2012
Site:	NANYUKI-ISIOLO-MERU	Job No.:	GCL/TGA-342/12	Depth:	2.0M	Sample No.	1117

								No. of	Blows		
		DCP TES	T RESULTS			0	10	20	30	40	50
Point No.	Blow Count	Cum. Blows	Penetration (mm)	Penetration Index (mm/blow)	100	PR	1				
0	0	0	78		100						
1	1	1	105	27.0							
2	1	2	125	20.0	200						
3	1	3	143	18.0			\mathbf{X}				
4	1	4	155	12.0	Ω.			PR 2			
5	2	6	185	15.0	<u></u> 300						
6	2	8	208	11.5	tior						
7	5	13	270	12.4	400						
8	5	18	330	12.0	Penetration (mm)						
9	5	23	395	13.0	A				\mathbb{N}		
10	10	33	515	12.0	500						
11	10	43	655	14.0						PR 3	
					600						
					700						

Penetration Index	Average (mm/blow)	Estimated CBR (%)	
PR 1	21	8.7	
PR 2	13	16.1	
PR 3	12	17.8	

Test By: LUCAS

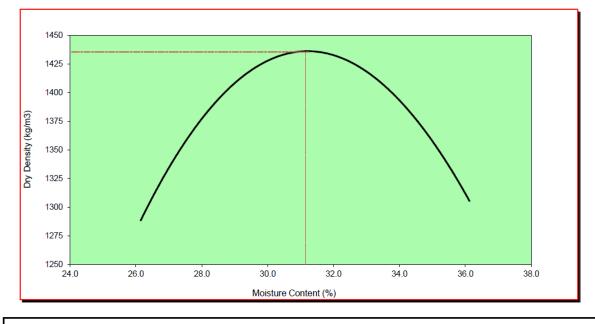
ANGLE POINT BEARING CAPACITY

MN39

CALCULATION OF SAFE BEARING CAPACITY: TP MN 39						
PROJECT:	PROPOSED	POWERLINE	SITE:	NANYUKI-ISIOLO-MERU	DATE RECEIVED:	09.12.2012
DEPTH: 2.0M		LOCATION:	EASTERN	JOB No.:	GCL/TGA_342/12	
MATERIAL DESCRIPTION: SANDY ELASTIC			TIC SILT		Sample No.:	1116

LABORATORY TEST RESULTS			
SHEARBOX		DENSITY	
$C(kN/m^2) =$	23	γ(kg/m ³) = 1887	
ø (°) =	21	γ (kN/m ³) = 18.51	

REFERENCE	CALCULATIONS	RESULTS
	Ultimate Bearing Capacity	
	q _f = 1.3cNc + 0.8γZNq + 0.4γ BNγ	
	Bearing Capacity Factors : Meyerhof's Analyses	
	N _c = 15.81	
Whitlow. R	N _q = 7.07	
Basic Soil Mech.	N _y = 3.42	
Tomlinson. M.J. Foundation	The Ultimate Bearing Capacity of a Pad Foundation	
Design & Construction	B(m)= 1.0	
	Z (m)= 2.0	
	$q_f = (1.3 \times 23 \times 15.81) + (0.8 \times 18.51 \times 2.0 \times 7.07) + (0.4 \times 18.51 \times 1.0 \times 3.42)$	708 kN/m ²
	The Safe Bearing Capacity of the foundation is : (Fs = 3.0)	
	q _s = 708/3.0	236 kN/m ²


Calculations By: B.K.

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

<u>BS 1377 - 4: 1990</u>

MN39

Project:	PROPOSED POWERLINE NANYUKI-ISIOLO-MERU		LOCATION: EASTERN			Depth:	2.0M
Site:			Job Ref.: GCL/TGA-342/12	Sample No.:	1116		
Material Description:	SANDY ELASTIC SILT	Sample Ref: TP MN 39			Date received:	09.12.2012	
Moisture Ado	dition	250cc	300cc	350cc	400cc	450cc	500cc
Mass of Mould+Base+Soil		5620	5760	5857	5888	5858	5772
Mass of Mould+Base		3995	3995	3995	3995	3995	3995
Mass of Compacted Soil		1625	1765	1862	1893	1863	1777
Bulk Density (Kgs/m³)		1625	1765	1862	1893	1863	1777
Tin No.		G01	G04	G45	G23	G19	G31
Weight Wet Soil		193.0	233.0	211.0	223.0	228.0	211.0
Weight of Dry Soil		153.0	182.0	162.0	169.0	170.0	155.0
Weight of Water 40.0		40.0	51.0	49.0	54.0	58.0	<mark>56.0</mark>
Moisture Content (%) 26.1		28.0	30.2	32.0	34.1	36.1	

Maximum Dry Density (Kg/m³): <u>1438</u>

<u>31.2%</u> **Optimum Moisture Content (%):**

Tested By: STEVE Date Reported: 25.01.2013 Checked By: WK

CHEMICAL ANALYSIS

Angle Point MN39		
Depth	2.0m	
рН	6.83	
Chloride(%) mg/l	-	
Sulphate (mg/l)		

INSITU DENSITY TEST

TP38-39		
Depth (m)	2.0	
Bulk density (kg/m3)	1560	
Moisture Content (%)	37.5	
Dry Density (kg/m3)	1134	
Maximum Dry Density (kg/m3)	1450	
Relative Compaction (%)	78.2	

ANGLE POINT 39 LOG

DATE	2:	03.09.12.2012		
LOGGED	BY:	LUCAS		
	MN 39			
LEGEN D	DEPTH (m)	MATERIAL DESCRIPTION		
Λ.	2.0	Brownish Red Elastic SILT		
V				